当前位置:晨阳文秘网>范文大全 > 优秀范文 >

不等式解法高中数学(六篇)

时间:2023-05-09 12:35:06 来源:晨阳文秘网

下面是小编为大家整理的不等式解法高中数学(六篇),供大家参考。

不等式解法高中数学(六篇)

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。

不等式的解法高中数学篇一

课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而示得,口欲言而示能”的境界,使他们有兴趣进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。

下来出示的问题1从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质。这一环节上展现给学生一个实物,使学生获得直观感受。

问题2、3的设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。

过问题4让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握、发展学生的辩证思维。

在运用符号评议的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予。这样既调动了学生的学习兴趣,也培养了学生的符号评议表达能力。

练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答音量的时候有点耽误时间。

让学生通过总结反思,一是进一步学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育丰功,用自信蕴育自信,学生以更大的热情投入致以捕捞学习中去。

本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛活跃。其中不存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。

不等式的解法高中数学篇二

这节课是一节概念课,学习不等式的性质。前面学生学习了不等式的解和解级以及等式的性质,为了解一元一次不等式,我们要引入不等式的性质来解。

这节课的内容不是很多,重点是让学生理解并掌握不等式的性质并用不等式的性质解一元一次不等式。对于不等式的性质,不是很难懂,这里完全可以放手给学生自己探索,自己总结,从特殊到一般,所以安排了三个思考题让学生分别总结出不等式的性质。利用不等式的性质解不等式可以参考利用等式的性质解一元一次方程的思想,要将不等式最后化成x>a或x教中情况

这整节课上下来学生学的比较轻松。一节课中,学生课堂的效率比较高,学生学习的效果比较好。

通过对学生课后作业的情况的批改情况以及听课老师的意见,觉得这节课还有一些不足,表现为:

1、这节利用探索稿教学,学生自我学习,这要求学生的素质比较高。在学生要独立完成思考和总结这个环节可以让学生一活动小组的形式进行,活跃课堂的次序。

2、在学生总结不等式的性质的探索过程中,让学生直接从数字总结出不等式的性质比较困难,可以从数字到字母的过程中加入比较简单的数字和字母之间的加减乘除的题目,这样从特殊到一般的过度就比较顺理成章。

3、探索稿怎么去利用?其实一般探索稿可以在上新课的前一天发给学生,让学生利用课余时间预习,这样可以节约很多课堂的时间,然后在课堂上对答案,教师简单的讲解,处理疑问,但这要求学生的的层次比较高,教师在课前做好大量的准备工作。这节课由于内容比较简单,可以在课堂上处理,但由于内容比较多,整个课程比价经凑。

4、在批改学生的作业时发现,学生在不等式的两边同时乘或除同一个负数时,没有把不等号改变,虽然课堂上教师也做了特别的强调,这里还需要改进。

5、在讲解不等式的性质1和性质2中,借用了天平来讲解,不高效果不是很好,学生理解不是很好,可以考虑去掉这个环节。

6、其实在学生在黑板上板演后可以让学生来讲解。

7、在这节课的后面讲例题的过程中可以多让学生见几种题型,可以多找一点最近几年的与不等式性质相关的题目。

其实,在教学的过程中,我们教师往往重视教的过程,而往往忽视了学生学的过程,如过我们能够多让学生动手,动脑,多总结,掌握一个好的学习方法,这比我们教任何知识点都要重要。

不等式的解法高中数学篇三

这周我讲了《一元一次不等式》,在讲《不等式的性质》这一节课,一开始我的设计思路是复习不等式的概念及不等式的解,然而进行不等式的3个性质教学,在学完3个性质后马上讲不等式的解集及在数轴上表示不等式的解集,最后才进行巩固练习。但我在第一个班教学过程中发现学生对不等式的解集的概念不理解,不知道如何在数轴上表示不等式的解集。

因此,我马上调整教学思路,在下个班让学生先复习不等式的概念及不等式的解,然后进行不等式的3个性质教学,讲完3个性质后马上让学生做3个性质的运用的相关练习,最后再讲不等式的解集及在数轴上表示不等式的解集。

通过这样调整教学思路,我发现学生进一步理解了不等式的概念及不等式的解,理解了不等式的3个性质并会运用这3个性质去解决有关的数学问题。不等式的解集是一个比较抽象的概念,但通过练习学生能理解什么是不等式的解集,因为不等式的解集是由学生自己解出来的,在学生理解不等式的解集的基础上再进一步让学生通过数轴表示不等式的解集,通过数形结合让学生加深对不等式的解集的认识,为下一节解不等式做铺垫。

我的反思和经验是:

1、课前充分准备是保证。从怎么引入怎么引导学生探索性质都进行充分的准备

2、对性质3这个难度的教学不够。学生以小组讨论的形式展开了对性质3的探索,但由于我对设计意图没有说清楚,导致有几个小组在不等式两边乘了不同的两个数来进行比较;
对于不等式两边同时除以同一个负数的教学完全回避了(我以为除法都可以化作乘法来做,所以讲乘法就够了),结果学生在遇到这类的题目都卡住了。

3、用式子表示不等式的三条性质一笔带过,备课还需要加强。我备课时认为这个知识点不重要,其实在这里可以训练学生的数学符号语言能力。

4、上课多注意学生的反应。根据学生的课堂反应及时的调整教学思路。

不等式的解法高中数学篇四

数学知识体系是一个前后连贯性很强的知识系统,在空间与图形领域,中小学数学主要体现为由直观几何、实验几何向论证几何逐渐过渡。初中数学教师在教学中要注意与小学教学相衔接,适当复习小学内容,在小学的基础上提高。下面从中小学衔接的角度,对“平行四边形的性质”(新人教版)这节课做了一些反思。

备教材:

备课时,我首先查阅了本届学生小学时学过的教材。发现,小学教材中“平行四边形”的定义用粗体作了明确界定,“对边相等”的特征学生是用度量或折叠的方法得到的。平行四边形的面积是通过割补转化为长方形进行重点学习的。所以学生应该对平行四边形的概念和特征已经有所认识并会求其面积。

“平行四边形”是全章重点内容之一,它是在学生已掌握了平行线的性质、全等三角形和多边形的有关知识的基础上研究的。平行四边形是平面几何的又一典型图形,它既是以前知识的综合应用也是下一步研究各种特殊平行四边形的基础,具有承上启下的作用。矩形、菱形、正方形的性质和判定都是在平行四边形的基础上扩充的,它们的探索方法也都与平行四边形的性质和判定方法一脉相承。梯形的性质、三角形中位线定理等的推证,也都是以平行四边形的有关定理为依据的。而“平行四边形的性质”又是本章的第一节,这一节的学习对学平行四边形的判定和其它特殊四边形起着关键的作用。教材中平行四边形的“对边相等”、“对角相等”、“对角线互相平分”三个性质是分两部分说明的,因这节课是采用探索式教学法,预计学生在同一节课中就能够得到这三个性质,所以把三个性质放在一节课中进行处理。

备学生:

为了清楚的了解学生的认知情况,我深入学生中间,调查了学生对平行四边形的掌握程度。发现,将近90%的学生能够说出平行四边形的定义;50%多的学生了解“平行四边形对边平行且相等”这一特征;而对“平行四边形对角相等”和“对角线互相平分”的性质,只有很少一部分学生因超前学习才了解。鉴于学生的认知结构,我把探索平行四边形的性质放在了角和对角线方面。

备教法:

《数学课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的.知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。我看了一位老师针对平行四边形上的一节公开课。这位老师可能是为了调动学生的主体性,让学生对“平行四边形”下一个定义。结果,学生把平行四边形的定义和所有判定方法全部说了出来,并说出这样定义的原因。听起来真是婆说婆有理,公说公有理,难以分辨用哪一个做定义更合适。最后老师说习惯上用“两组对边分别平行”来定义。看了这节课后再结合小学教材和学生的认知情况,我认为,小学教材已对“平行四边形”作了明确叙述,在“平行四边形”是如何定义的这一方面再做文章只能又陷入老师给学生解释为什么不能用平行四边形判定(学生并不知道是判定)来定义,而定义本身常常又是一个规定性的东西。因此,我在这个地方采取让学生事先准备好两张完全相同的三角形纸片,然后在课堂上让学生拼出平行四边形并把拼的图形展示在黑板上,在调动学生积极性的同时,既能发现学生对平行四边形的理解情况,也为下面平行四边形性质的证明做好铺垫。

在探索平行四边形性质上,采取自主探索、合作交流的方式,并把探索到的结论和证明过程填写在事先发给的探究报告里,使学生的思维和落实密切联系在一起。让学生体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,感受公理化思想。

恰当的利用多媒体课件。为了让学生对平行四边形的三条性质有更明确的认识,我从旋转的角度准备了形象生动的性质探索课件。

整节课采取探索式证明方法,即采取观察、猜想、直观验证、推理证明、得出性质的方法。向学生渗透化复杂为简单,化新知为旧知的“转化”的数学思想方法。

进入初中以后,随着学生逻辑思维能力和抽象思维能力的加强,不能再仅局限于一些结论的获得,而要注重结论的推导过程,揭示知识的来龙去脉,也就是不仅要知其然还要知其所以然。教材也要求学生要对发现到的结论进行推理论证。

对“平行边形的对边相等”这一性质在小学是通过观察、测量对边的长度进行比较得到的。能否证明这一结论呢?学生在学多边形知识时曾经采取把多边形分割成三角形来研究,所以课堂上当对这一结论进行证明时,学生很快想到把四边形分割成三角形利用全等的知识来解决。但学生在推理时符号语言说的还不太顺畅,推理也还缺乏规范性。所以在学生的叙述下教师进行规范的推理板书,给学生做出示范。

不等式的解法高中数学篇五

1、类比法讲解让学生更易把握

类比一元一次方程的解法来学习一元一次不等式的解法,让学生非常清楚地看到不等式的解法与方程的解法只是最后未知数的系数化为1不同,其它的步骤都是相同的,还特别能强调最后一步“负变,正不变”。

2、少讲多练起效果

减少了教师的活动量,给学生足够的活动时间去探讨。教师只作出适当的引导,做到少讲,少板书,让学生有足够的时间和空间进行自主探究,自主发展,促使学生学会学习。

3、数形结合更形象

通过画数轴,并把不等式的解集用数轴表示出来体现了“数形结合”的数学思想。

1、内容过多导致学生灵活应用时间少

一堂40分钟的课要容纳不等式三条性质的探索与应用,显然在时间上是十分仓促的。实践也表明确实如此,在探索好三条性质后,时间所剩无几,只能简单的应用所学知识解决一些较为简单的问题,学生灵活运用知识的能力没有很好地体现出来。

2、教学过程中的小毛病还需改正

在上课的过程中,许多平时忽视的小毛病在课中也都体现出来了,例如:学生在回答问题的过程中,为了更快的得到自己预期的答案,往往打断学生的回答,剥夺了学生的主动权;
要求学生进行操作实验时,老师所下达的指令不是特别清楚,时常在学生进行操作的过程中再加以补充说明,这样对学生思考问题又带来一定影响;
课堂小结中学生的体会与收获谈的不是很好,由此可见,这是平时上课过程中的忽视所导致的。

不等式的解法高中数学篇六

本节课主要学习不等式的三个基本性质,通过实例导入课题,形成不等式的基本性质。不等式的性质也是中学数学的重要内容,它渗透到了中学数学课本的很多章节,在实际问题中被广泛应用,可以说它是解决其它数学问题的一种有利工具。因此不等式的性质的学习对培养学生分析问题,解决问题的能力,体会数学的价值都有较大的作用。在此基础上使我们认识到数学来自于实践,也应回到实践中去,从而提高学习数学的兴趣,培养自觉运用数学的意识。

现就今天在初一级1班上的《不等式的性质》这节课,进行反思如下:

不等式的三个基本性质是本章解一元一次不等的基础,也是证明不等式主要依据。解不等式就是用不等式的性质来施行一系列的等价变换。因此,在课前准备工作上要正确认识和理解不等式的性质。在教学过程中,要灵活的应用不等式的性质解一元一次不等式。由于一元一次不等式的解法与一元一次方程的解法十分相似,所以在学习本节时,与一元一次方程结合起来,用比较、类比的方法去学习,弄清其区别与联系。在学生已经理解一元一次不等式的解集的基础上再进一步让学生通过数轴表示不等式的解集,通过数形结合解一元一次不等式。

在本节课中,要求学生学习的主要内容是不等式的三条性质,及运用这三条性质对不等式进行正确变形来解不等式。如果直接就给同学们讲不等式有这样的三条性质,然后就是反复的运用、反复的操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我在上这一节课时就想到了运用类比的思想来学习这节课的内容,这样学生既学会了新知识又复习了旧知识,还把他们联系到了一起,而且学生还觉得这节课学的知识其实好象是旧知识,只是进行了一点改动,接受起来比较的容易,掌握起来也比较的容易。这个方法可以说是贯穿了整堂新课的学习。

在课前复习的这个教学环节上,我首先是用解两个方程引出了等式的基本性质,然后把这两个方程的等号变成不等号,让学生们观察,进行猜测、判断。在学生的猜测与判断中,我不做任何肯定与否定,设置了一个悬念,由此来引入我们将要学习的新内容,给学生增加了一种新奇感。

教学中关注不等式的实际背景,从对天平,跷跷板等学生熟悉的场景中数量关系的分析,引入不等式,不等式的解集,不等式的性质。全课着重知识的动态生成,渗透数学的建模,类比,分类等思想方法,促使学生从学会向会学转化。同时要注意不等式性质3是难点,也是重点,在学生理解的同时,应多加训练。

在进行三条性质的探索的过程中,我还是运用了类比的思想。我是分两步进行性质的推导的。首先是性质一,我是让同学们运用天平像做游戏一样做实验,既可以提高学生的学习兴趣,又能发展学生的团结协作能力,而且大家一起做实验,也提供了讨论的空间和机会。

对照等式的性质一,所以同学们很容易就推断出不等式的性质一。性质二和性质三是一起推导出来的。这里我是让同学们独立地通过数字来探寻答案,主要考虑到给他们独立思考的空间,一方面我想让他们举的例子多一点、全面一点,另一方面是因为我观察到同学在讨论的时候有的同学是只听不讲,所以我想给他们一些空间,一边做一边就可以想一想,特别是有了前面性质一的推导,他们应该还是比较能够摸到方向的。但是出来的答案可能不完善,这个我在上课之前就考虑到了,因为这两条性质与等式的性质二有了一定的区别,但是我想有那么多的同学举例子,每人举5个,总是可以互相补全的,即使讲不全也没关系,我可以补充,甚至对他们的结论进行反驳,营造一个互相辩论的机会,由此最终达到教学目的。

在处理例题的时候我的原则是夯实基础,基本知识的掌握和基本技能的训练同学们必须非常地熟练,所以在做每一道题的时候我都让他们说出是“为什么”,并在这一节重视用数轴表示不等式的解集。最后,再回到上课最初的那两个问题,同学们通过一节课的探索,马上就解决了问题,让大家体会了成功的喜悦。

猜你喜欢