当前位置:晨阳文秘网>范文大全 > 优秀范文 >

最新圆锥体积教学设计说明(14篇)

时间:2023-06-04 09:40:06 来源:晨阳文秘网

下面是小编为大家整理的最新圆锥体积教学设计说明(14篇),供大家参考。

最新圆锥体积教学设计说明(14篇)

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。

圆锥的体积教学设计说明篇一

1、知识技能目标:

◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;

◆使学生会应用公式计算圆锥的体积并解决一些实际问题。

2、思维能力目标:

◆提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。

3、情感态度目标:

◆使学生在经历中获得成功的体验,体验数学与生活的联系。

重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题

难点:探索圆锥体积的计算方法和推导过程。

1、多媒体课件。

2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;
带有刻度的直尺,绳子等。

(一)创设情境,导入新课

1、故事情景引发猜想

电脑呈现出动画情境(伴图配音)。

炎热的夏天,小明和小强去“广场超市”的 冷饮专柜买冰淇淋,圆锥形的冰淇淋标价是0.8元,圆柱形的标价2元。于是,他们两个为买哪一种形状的冰淇淋争执起来。同学们,你们能帮他们解决到底买哪种形状的冰淇淋更合算吗?(图中圆柱形和圆锥形的雪糕是等底等高的。)

(学生回答自己的猜想,有说买圆锥形的,有说买圆柱形的)

教师:学完今天的内容后,同学们就能正确解决了!

2、圆锥实物揭示课题

①教师出示一筒 沙,师:将这筒沙倒在桌上,会变成什么形状?

(学生猜想后教师演示)

②师:在这堂课上,你希望学到哪些知识呢?

(生自主回答,确立学习目标)

③揭题:圆锥的体积

师:好,我们一起努力吧!

(二)自主探索,合作交流

1、直观引入直觉猜想

(1)教师演示刨铅笔:把一支圆柱形铅笔的笔头刨成圆锥形。

(2)引导学生观察,并思考:你觉得圆锥的体积与相应的圆柱体积之间有联系吗?你认为有什么联系?

①教师鼓励学生大胆猜想。(生说可能的情况)

②师:你们是怎样理解“相应的”一词的?说说你的看法。

生说后,师总结:“相应的”,即圆锥与圆柱是等底等高的"。(用实物演示给生看)

2、实验探索发现规律

(1)小组讨论填写材料单,有顺序地领取材料

学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、米、等底等高的圆柱形和圆锥形容器各一个;
另外2个小组的实验材料:沙子、米等,等底不等高和等高不等底的圆柱形和圆锥形容器各一个)

(2)小组合作实验,并填写实验报告单。

实验方法

发现结果

第一次实验

第二次实验

第三次实验

结论:

(3)汇报结果,实物投影展示实验报告单。

(4)组际交流,得出结论:

结论1:圆锥的体积v等于和它等底等高圆柱体积的三分之一。

结论2:等底不等高的圆锥体与圆柱体,圆锥的体积是圆柱体积的二分之一。

结论3:等高不等底的圆锥体与圆柱体,圆锥的体积是圆柱体积的四分之一。

结论4:圆柱的体积正好是圆锥体积的3倍。

结论5:圆柱的体积是等底等高的圆锥体积的3倍。

……

师:同学们实验的结论各不相同,到底哪组的结论对呢?

(各小组纷纷叙述自己小组的实验过程、结论;
说明自己小组的准确性,学生的思维处于高度集中状态)。

(5)参与处理信息。

围绕三分之一或3倍关系的情况讨论:

师:我们先来看得出三分之一或3倍关系的这几个小组;
请小组代表说说他们是怎样通过实验得出这一结论的?

(请他们拿出实验用的器材,自己比划、验证这个结论。突出他们小组的圆柱和圆锥是等底等高的)

师:其他小组得出的结论不同,是不是由于实验过程或结论有错误呢?我们也请小组代表说说你们的看法。

(生说明他们的过程和结论都是对的,只是他们的圆锥和圆柱不是即等底又等高的)。

师:总结以上各个小组的看法,我们可以得出什么样的结论?

生1:圆锥的体积等于和它等底等高圆柱体积的三分之一。

生2:圆柱的体积是等底等高的圆锥体积的3倍。

生3:我认为第一种说法较合理,强调了圆锥体积的求法。

……

师总结并板书:

圆锥的体积等于和它等底等高的圆柱体积的1/3。

3、启发引导推导公式

师:对于同学们得出的结论,你能否用数学公式来表示呢?

生:因为圆柱的体积计算公式v=sh;
所以我们可以用1/3 sh表示圆锥的体积。

师:其他同学呢?你们认为这个同学的方法可以吗?

生:可以。

师:那我们就用1/3 sh表示圆锥的体积。

计算公式:v= 1/3 sh

>师:(1)这里sh表示什么?为什么要乘1/3?

(2)要求圆锥体积需要知道哪两个条件?

生回答,师做总结

4、简单应用尝试解答

例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1.5米。你能计算出小麦堆的体积吗?

(生独立列式计算全班交流)

(三)巩固练习,运用拓展

1、试一试

一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的体积是多少立方厘米?

2、练一练

计算下面各圆锥的体积:

3、实践性练习

师:请你们将做实验时装在圆柱容器里的沙(或米)倒出,堆成一个圆锥形沙(米)堆,小组合作测量计算它的体积。

4、开放性练习

一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?(可小组讨论)

(四)整理归纳,回顾体验

1、上了这些课,你有什么收获?(互说中系统整理)

2、用什么方法获取的?你认为哪组表现最棒?

3、通过这节课的学习,你有什么新的想法?还有什么问题?

(五)问题解决。(电脑呈现出动画情境)

小明和小强到底买哪种形状的冰淇淋更合算呢?

师:谁能帮他们解决这个问题呢?

(学生说出买圆柱形的冰淇淋更合算的理由。)

圆锥的体积

圆锥的体积等于和它等底等高的圆柱体积的1/3。

《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此,在教学圆锥体积计算时,一改以前教师演示或在教师指令下实验的做法;
采取提供学生材料和机会,引导学生自主探究的学习方式。具体表现在:

(1)密切数学与生活的联系,富有儿童情趣。

从学生熟悉的生活故事引入,为新知识作好铺垫和准备。又从刨铅笔直观引入,引发学生大胆猜想,学生的主动性,探究性得到培养。最后的问题解决回归于生活,实现了丛生活中来,又服务于生活的指导思想。

(2)在经历“错误”之中历炼思维

在平时的课堂教学中,学生往往会出现很多错误性的东西,比如:错误的认识、错误的过程、错误的结论等。很多老师不是“遇错即纠”,就是“遇错即批”,其实大可不必,因为错误之中也有可以充分利用的宝贵资源。“授人以鱼,不如授之以渔”。学生学习数学不仅要学会题的解法,更要懂得解法的来龙去脉。我们要利用“错误”这一资源让学生思考问题,经历碰壁,最终找到解决问题的方法,把思考的实际过程展现给学生,让学生经历思维的碰撞,真正关注学习的过程,帮助他们理解和掌握数学思维和方法。

为了使学生对“等底等高”这一条件能牢固掌握并深刻理解,在分发学具时,我有意将等底等高、等底不等高和等高不等底的三组不同的圆锥形和圆柱形容器分发给各小组,学生通过动手操作后,得出的结论大不相同,在学生汇报的过程中,意见发生了重大分歧,不同结论的各小组都坚持自己的结论准确无误,认知出现了激烈的冲突,此时,我并没有给出评判,而是要求学生认真去观察、比较、发现各自小组的圆锥和圆柱有什么相同或不同的地方,通过观察、比较,最后终于得出只有在等底等高的条件下圆锥的体积才等于圆柱体积的三分之一。这样做既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是利用“错误”这一资源产生的效果

(3)学习过程中揭示了一般科学的研究方法:

提出问题——直觉猜想——实验探索——合作交流——实验验证——得出结论——实践运用。这为以后的探究学习提供了一个基本方法,使学生在自主探索中掌握了知识,同时获得了最广泛的数学活动经验、思想和方法,更发展了学生的反思意识、小组自我评价意识。课堂中,启发学生提问,猜想,动手测量,注重了解决问题能力的培养,学生体验到了成功的快乐。

纵观本节课的设计,运用现代教学理论,以新课程的理念指导教学,较好的处理了主导和主体、知识和能力、过程和结论的关系,充分调动了学生的积极性,引导全体学生动脑、动手、动口参与学习的全过程。整节课教学目标明确,教学层次清楚。结构严谨,重点突出。

圆锥的体积教学设计说明篇二

《圆锥的体积》是九年义务教育六年制小学数学第十一册第三单元的内容。

1、通过让学生小组合作探究,利用不同的方法测量出圆锥的体积。体验到计算圆锥体积的计算公式v=1/3sh是最简便的方法。

2、锻炼学生的操作能力,估算能力,评价能力,更好的发展他们的创新能力。

3、培养学生的合作意识及主动探索知识的精神。

让学生自己亲身体验到计算圆锥体积的不同方法。从而理解计算公式v=1/3sh,并感受到计算公式的简便。

教学难点:能利用不同方法计算不同物体的体积。知识的活学活用。

1、个学生一组,每组各有量杯;
量桶;
一升的容器;
等底等高的圆柱与圆锥器皿;
大米,沙子或水;
1立方厘米的小方块若干。

2、教学软件。

一、创设情景,激趣引新。

1、首先教师手中拿一圆柱体问:“同学们,老师想知道这个圆柱体的体积你们能帮助我吗?”

(学生踊跃举手说明。可以先测量出圆柱的半径与高。再用圆周率乘半径的平方得到底面积,最后乘以高就可以了。)

2、教师表示赞同,并抓住这一契机拿出于刚才圆柱等底等高的圆锥,问:“那老师这里还有一个圆锥体,它的体积应该怎样计算呢?你们知道吗?”(学生齐答不)那你们想不想研究呢?(学生齐答想)好,下面我们就一起来研究圆锥的体积该怎样计算。

〈设计意图:通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切。从而产生学习新知的欲望。〉

二、小组合作,探究学习。

1、动手操作,测量圆锥体的体积。

要求:每组同学,利用桌面上的工具(量杯,量桶,与圆锥等底等高圆柱容器,大米,沙子,水,1立方分米小方块)测量出自己组内的圆锥体的体积。测量物体是容器的厚度不计。

〈全体学生在动手操作,互相商量解决问题的办法。教师巡回指导。课堂呈现小组探究学习的热烈场面。〉

3、分组汇报不同的方法。

〈学生在汇报时可边讲解边示范〉

方法一:可以利用量杯。首先把圆锥体容器内装满水,然后把它倒入量杯内,我们看到水面的刻度就是水的体积也就是圆锥体的体积。

方法二:利用手中的一立方厘米的小木块进行估算。

方法三:受《曹冲称象》的启示。利用一生的容器。把它装满水后将圆锥体放入,溢出水后拿出圆锥体。这时看容器空出来的地方为长方体,用一立方分米减去长方体的体积就可以得到圆锥体的体积了。

方法四:把圆锥体内装满大米、沙子或水,然后将它到入与它等底等高的圆柱体容器里。发现到了3次正好到慢。也就是说,圆锥体的体积等于与它等底等高的圆柱体的三分之一。用字母表示为:v=1/3sh

〈设计意图:通过讨论研究和动手操作,发展学生的创新能力,和解决实际问题的.能力。〉

(1)在讲解第四个方法时,教师可以向学生质疑,在操作此过程时有一个非常重要的前提条件是什么?为什么圆锥体的体积等于与它等底等高圆柱体体积的三分之一?

(2)学生再次在小组内操作探究。

(3)汇报结论。

(4)微机演示。

当等底不等高时,当等高不等底时,当底和高都不相等时,出现的结果是怎样的。

〈设计意图:通过学生探究与微机演示,使学生直观的感受圆锥体与圆柱体之间关系。加深对圆锥体体积计算公式的理解。〉

4、评价以上各种办法

同学们的结论是用公式计算比较方便。

三、解决实际问题

(问题一)

1、各小组量一量,算一算自己组内的圆锥体的体积。(测量,计算时都要保留整数)

2、汇报结果。

先测量出圆锥体的直径,算出底面积。再测量出高,算出它的体积。算式:1/3x[3.14x(10/2)x10]≈262立方厘米(忽略厚度,即把溶剂可看作体积)

(问题二)

1、现知道手中的圆锥体每立方厘米约装0.9克大米,计算这个圆锥体容器可装多少克大米?

2、汇报结果。

用每立方厘米装大米的克数乘圆锥的体积。算式:0.9x262≈236克

3、验证计算结果

用称称一称,比较一下结果。

4、讨论两次结果为什么不同。

由于测量时厚度不计,计算时是近似值。都存在误差。

〈设计意图:通过测量,计算等环节,发展学生的应用意识及估算的能力。〉

(问题三)

利用圆锥体积公式计算。

(1)r=2cm h=6cm v=?(2)d=6m h=5mv=?

(问题四)

计算不规则物体体积或容积。(直说出计算的方法即可)

1、用什么方法计算出葫芦能装多少水?

2、胡萝卜的体积怎样计算?

3、不规则的零件体积计算?

〈设计意图:结合生活实际让学生感受到数学与生活的联系。及解决实际问题的不同方法及策略,培养创新能力。〉

四、总结全课

说说你的收获,鼓励学生学习知识要活学活用,大胆动脑,勇于创新。

圆锥的体积教学设计说明篇三

1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。

2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。

3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。

教学重点: 通过实验的方法,得到计算圆锥的体积。

教学难点:运用圆锥的体积公式进行正确地计算。

教学准备:等底等高的圆柱和圆锥容器模型各一个。

一、复习导入

师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。

1、圆柱体积的计算公式是什么? (指名学生回答)

2、圆锥有什么特征?

同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的"知识课堂吧!(板书:圆锥的体积)

二、探究新知

课件出示等底等高的圆柱和圆锥

1、引导学生观察:这个圆柱和圆锥有什么相同的地方?

学生回答:它们是等底等高的。

猜想:

(1)、你认为圆锥体积的大小与它的什么有关?

(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?

2、学生动手操作实验

(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?

(2)、通过实验,你发现了什么?

小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一 。

3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察, 用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?

问:把圆柱装满一共倒了几次?

生:3次。

师:这说明了什么?

生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积= 1/3×圆柱体积 )

师:圆柱的体积等于什么?

生:等于“底面积×高”。

师:那么,圆锥的体积可以怎样表示呢? (板书:圆锥的体积= 1/3×底面积×高)

师:用字母应该怎样表示? (v=1/3sh)

师:在这个公式里你觉得哪里最应该注意?

三、教学试一试

一个圆柱形零件,底面积是170平方厘米,高是12厘米。这个零件的体积是多少立方厘米?

四、巩固练习

1、计算圆锥的体积

2、判一判

3、算一算

4、拓展延伸

五、总结

通过这节课的学习,你有什么收获呢?

六、板书:

圆锥的体积=圆柱的体积×1/3

圆锥的体积=底面积×高×1/3

用字母表示v=1/3sh

圆锥的体积教学设计说明篇四

第25-26页,例2及练习四的第3、4题。

1、通过分小组倒沙的实验,使学生自主探索圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

掌握圆锥体积的计算公式。

1、理解圆锥体积公式的"推导过程;

2、掌握圆锥体积计算方法并能运用解决简单的实际问题。

1、学生预习教材;

2、教师准备等底等高的圆柱和圆锥形容器若干个,沙土,直尺,平板。

一、复习

1、圆柱的体积公式是什么?(学生交流后做幻灯片中的练习题)

2、说一说圆锥有哪些特征。

a、出示实物图,学生说一说生活中的圆锥形物体

b、总结圆锥的特征,学生齐读。

二、导入新课

1、幻灯出示一圆锥形沙堆

2、师:操场上,同学们要计算这堆沙子的体积,怎么计算呢?

引出课题:这就是这节课我们要探索的问题

3、板书课题

三、探索新知

1、学习圆锥体积的推导公式

(1)思考:圆柱的体积公式是怎样推导出来的?(学生交流讨论,教师及时鼓励学生回答)

(2)师:我们能不能也通过已学过图形来求圆锥的体积呢?

学生小组讨论交流

(3)师:有的同学提出了做实验的方法,那么需要哪些器材呢?

学生交流后,幻灯出示实验器材

(4)师:用这些器材怎样做实验呢?

学生小组讨论后,教师:下面,我们就来试一试这种方法

(5)学生做实验

a、观察自己手中的圆柱与圆锥,讨论他们的共同点。(等底等高)

师:下面的时间,请同学们按照实验报告单的步骤做实验,并将结果填入实验报告单中。(教师巡视指导)

b、集体交流实验结论,大屏幕演示结果

c、想一想:通过实验你发现了什么?

要求一个圆锥的体积,必须具备哪两个条件?

明确:求圆锥的体积,圆锥的底面积和高是必备的直接条件。

(6)练习

2、拓展内容

(1)有些情况下,题目中并不直接告诉圆锥的底面积和高,如果遇到下列情况,我们该如何求圆锥的体积呢?

(2)学生分小组讨论,填写表格。(教师巡视指导)

(3)集体交流,大屏幕展示结果

(4)练习:

3、巩固练习

三、拓展知识

1、出示几组不同的情况,指定每组完成一项

2、展示结果

3、练习

四、小结

师:同学们,今天这节课你都学会了什么?

学生交流回答,教师板书

五、作业设计

六、板书设计

圆锥的体积

等底等高的圆锥和圆柱,

圆锥的体积是圆柱体积的

圆锥的体积教学设计说明篇五

1、情感目标培养学生探索合作精神。

2、知识目标理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式,以及运用公式计算圆锥体积。

3、能力目标培养学生的空间想象力,合作交往能力、创新思维以及动手操作能力。

理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式。

圆锥体积计算公式的推导过程。

关键

公式推导过程中:圆柱体和圆锥体必须是等底等高,则它们之间才存在必然的关系。

活动一:比大小

活动目的:激发求知欲望。

课件播放:春天到了,万物复苏,春笋也从睡梦中醒来,三只可爱的小熊猫来到竹林中踩竹笋,它们都踩到了一只竹笋。熊猫都都说:今天我踩的.竹笋是最大的。熊猫眯眯听了不服气的说:谁说的,第一大的应该是我的竹笋。熊猫花花也不甘示弱的说:不对,不对,我的竹笋应该是第一大!

师:竹林里的争论还在继续着,同学们,到底三只熊猫的竹笋谁的最大呢?让我们来猜一猜吧!

师:我们光是猜,说服力并不强,那么能找到什么真正能解决问题的办法吗?

活动二:议一议

活动目的:通过师生、生生的互动讨论、交流、探究,从而发现圆锥的体积和圆柱的体积有关。

1、出示课题

2、找圆锥体和学过的什么体有相似之处

3、猜一猜,圆柱的体积和圆锥的体积的关系。

圆锥的体积教学设计说明篇六

一、复习导入。

1、怎样计算圆柱的体积?(板书公式)

2、一个圆柱的底面积是60平方米,高15米,它的体积是多少立方米?

3、出示一个圆锥,请学生说说圆锥的特征。

4、导入:前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积应怎样计算呢?今天这节课我们就来研究这个问题。(板书课题)

二、动手测量,大胆猜想。

1、动手测量,找圆锥和圆柱的底和高的关系。

师:为了我们研究圆锥体积的方便,每个小组都准备了一个圆柱和一个圆锥。下面请同学们以小组为单位,动手测量一下,你们手中的圆柱和圆锥,看看你能发现什么?

2、学生动手测量,教师巡视。给予指导。

3、交流得出结论:圆柱和圆锥等底等高。

4、猜想等底等高的圆柱和圆锥的体积之间有什么关系?

三、实验操作,推导出圆锥体积计算公式。

1、实验操作。

师:圆锥的体积到底与等底等高的圆柱的体积之间有什么关系呢?我们就用实验来验证我们的.猜想。每个小组都准备了米或沙,打算怎么实验,商量好办法后再操作。

2、学生分组实验,教师巡视。

3、汇报交流,你们组是怎么做实验的?通过实验你发现了什么?

4、强调等底等高。

5小结:不是任何一个圆锥的体积都是任何一个圆柱体积的1/3,必须有前提条件。(板书结论)

6、练习(出示)

(1)一个圆柱的体积是1.8立方分米,与它等底等高的圆锥的体积是()立方分米。

(2)一个圆锥的体积是1.8立方分米,与它等底等高的圆柱的体积是()立方分米。

7、得出圆锥的体积计算公式。

8、用字母表示圆锥的体积计算公式。

三、巩固练习。

1、计算下面圆锥的体积。(只列式不计算)

底面积是6.28平方分米,高是9分米。

底面半径是6厘米,高是4.5厘米。

底面直径是4厘米,高是4.8厘米。

底面周长是12.56厘米,高是6厘米。

2、填空。

a圆锥的体积=(),用字母表示是()。

b圆柱体积的与和它()的圆锥的体积相等。

c一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

d一个圆锥的底面积是12平方厘米,高是6厘米,体积是()立方厘米。

3、判断。(用手势表示)

a圆柱体的体积一定比圆锥体的体积大()

b圆锥的体积等于和它等底等高的圆柱体的()

c正方体、长方体、圆锥体的体积都等于底面积×高。()

d等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()

四、全课小结。

师:今天这结课学习了什么?通过今天的学习研究你有什么收获?

五、解决实际问题。

在建筑工地上,有一个近似圆锥形状的沙堆,测得底面直径是4米,高1.5米。每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)

圆锥的体积教学设计说明篇七

圆锥的体积是传统的教学内容,对这部分内容的编排,在内容和要求方面没有大的变化,实验教材的编排体现了新的教学理念,使得教材的面貌发生了较大的变化。具体来说有这样几个变化:

(1)加强了所学知识与现实生活的联系。教材通过列举大量现实生活中具有圆锥体特征实物直观引入,让学生观察思考这些物体形状的共同的特点,并从实物中抽象出它们的几何图形。当学生认识它们的主要特征后,又让学生从生活中寻找更多的具体如此特征的实物,从而加强所学知识与现实生活的联系,进一步感受几何知识在生活中的广泛应用。

(2)加强了对图形特征,体积、方法的探索过程。在以往的教学中,这部分内容的编排更侧重于理解和掌握图形的特征、体积的计算方法,而对于促进学生空间观念的发展在学习素材和实践操作方面都显不够。实验教材加强了动手实践、自主探索、,让学生经历知识的形成过程,使学生获得较多的有关自主探索和空间观念的训练机会。

(3)加强了学生在操作中对空间与图形问题的思考。

加强了学习方法的引导,鼓励学生独立思考,培养学生的学习能力。教材注意鼓励学生运用已有的知识对新学习的内容进行联想和猜测,再通过实验和推理验证,培养学生良好的学习和思考习惯。如:联系圆柱体公式鼓励学生猜测圆锥体积的计算方法。圆锥体积的教学是按照引出问题联想、猜测实验探究导出公式的思路设计的,在猜测的基础上进行试验和推理,使学生受到研究方法和思维方式的训练,发展和提高自主学习的能力。

1、理解并掌握圆锥的体积的计算方法,能运用公式解决简单的实际问题。

2、提高学生实际应用的能力。

3、培养学生利于学习,勇于探索的精神。

圆锥的体积公式的推导过程。

进一步理解圆锥的体积公式,能运用公式进行计算,能解决简单的实际问题。

合作交流自主探究动手操作

同样的圆柱形容器若干,与圆柱等底等高的圆锥,与圆柱等高不等底的圆锥,与圆柱不等高不等底的圆锥,沙子和水

一、复习导入

1、提问:援助的体积公式是什么?

2、出示圆锥的几何图形,学生说出圆锥的底面、侧面和高

3、导入:同学们,前面我们认识了圆锥,掌握了它的特征,那么,圆锥的体积公式怎样计算呢?这节课我们就来研究这个问题。(板书课题:圆锥的体积)

二、探究新知

(一)指导探究圆锥的体积计算公式

1.师:下面我们用实验来探究圆锥体积的计算方法。

(1)老师给每组同学都准备了圆柱体和圆锥体容器、沙子和水

(2)实验要求

做一做:实验时先往圆锥里装满水往圆柱里倒,直到把圆柱里得倒满水为止。

比一比:实验前比一比援助和圆锥底面和高的关系。

想一想:通过实验你发现了什么?

2.学生分组试验,边实验边做记录

3.学生汇报试验结果

4.分析数据,做出判断

观察全班数据,发现了大多数情况下圆柱能装下三个圆锥的沙和水

5.进一步观察分析,什么情况下圆柱能装下三个圆锥的沙和水

6.教师强调:只要是等底等高的就存在上面的现象。

7.师演示(实验)等底等高的圆柱和圆锥

板书:v圆柱=3v圆锥或v圆锥=1/3v圆柱

8.你们能用字幕表示他们的关系么?

v圆锥=1/3v圆柱=1/3sh

9.要求圆锥的体积必须知道什么?

(二)解决实际问题

导言:同学们对本节课的知识学得很好,下面请同学们解决一下实际问题。

出示例3:

(1)指名读题,分析题意

(2)指两名同学板演,其他齐做

(3)汇报,说解题思路

(4)拓展:如果就给出这堆沙子,没有任何数据,说说你解决这个问题的办法。

(三)质疑

三、巩固练习

(一)实战训练营:填空

1、圆锥的底面是一个()形,从圆锥的"顶点到底面圆心的距离是圆锥的()。

2、圆锥的体积等于和它()的圆柱体体积的(),所以圆锥体的体积()

3、把一个圆柱削成一个最大的圆锥,这个圆锥的体积是原来圆柱体积的(),削去部分体积是圆柱体体积的()。

4、一个圆锥体体积是5.4立方分米,与它等底等高的圆柱的体积是()。

(二)数学门诊部:判断对错

1、两个圆锥体的底面积相等,他们的体积也相等.()

2、圆锥的体积是圆柱体积的1/3。()

3、圆柱的体积一定大于圆锥的体积。()

4、一个圆锥与一个圆柱等底等体积,那么圆锥的底面积是圆柱的1/3。()

(三)求下列圆锥的体积

1、底面半径是2cm,高是8cm

2、底面直径是2dm,高是5.8dm

3、底面周长是6.28cm,高是7.6cm

4、高是16dm,底面直径是高的5/8。

(四)解决实际问题

一个圆锥形小麦堆,底面周长是31.4m,高是4m,如果每立方米小麦重750kg,那么这堆小麦重多少千克?

(五)维训练题

一个圆锥形的小麦堆,量得其占地面积是12平方米,高是1.8米,把这堆小麦装入一个粮仓里,正好站这个粮仓容积的2/15,这个粮仓得的容积是多少立方米?

四、总结

这节课你有哪些收获?

五、作业

练习四3478题

板书设计圆锥体的体积

v圆柱=3v圆锥或v圆锥=1/3v圆柱

v圆锥=1/3v圆柱=1/3sh

圆锥的体积教学设计说明篇八

九年义务教育六年制小学数学第十二册p32页。

1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。

2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。

3、进一步培养学生将所学知识运用和服务于生活的能力。

灵活运用圆柱圆锥的有关知识解决实际问题。

同教学难点。

练习的过程是学生将所学知识内化、升华的过程,练习过程中既有基础知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。力求使不同层次的学生都学有收获。

一、复习铺垫、内化知识。1. 圆锥体的体积公式是什么?我们是如何推导的?

2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。

(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。

(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。

(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。

3.求下列圆锥体的体积。

(1)底面半径4厘米,高6厘米。

(2)底面直径6分米,高8厘米。

(3)底面周长31.4厘米.高12厘米。

4、教师根据学生练习中存在的问题,集体评讲。同座位的同学先说一说圆锥体积公式的推导过程。

学生独立练习,互相批改,指出问题。

学生交流一下这几题在解题时要注意什么?

二、丰富拓展、延伸练习。1.拓展练习:

(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?

(2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?

2.完成31页第5题。讨论下列问题:

(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?

(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?

3.分组讨论:圆柱的"底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?

学生分组讨论,教师参与其中,以有疑问的方式参与讨论。

三、充分提高,全面升华。

1.展示一个圆锥形的沙堆,小组讨论一下用什么方法可以测量出它的体积。

2.教师给每一组一小袋米。让学生在桌子上堆成一个近似的圆锥体,通过合作测量的形式求出它的体积。

3.讨论练习八蒙古包所占空间的大小的方法。

(1)蒙古包是由哪几个部分组成的?

(2)上部的圆锥和下部的圆柱有哪些相同的地方,有哪些不同的地方?

(3)同学们能独立地求出蒙古包所占的空间的大小吗?请试一试。

4.交流一下本节课的收获。

学生分组讨论后动手实践并计算。

学生先交流。

四、全课总结,内化知识。

1.提问:

(1)同学们掌握了圆锥体的哪些知识?

(2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?

2.学有余力的同学思考38页思考题。

3.作业:练习八6、7、8

学生独立练习

圆锥的体积教学设计说明篇九

六年制小学数学教材第十二册第25-26页

1、知识技能目标:

◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;

◆使学生会应用公式计算圆锥的体积并解决一些实际问题。

2、思维能力目标:

◆提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。

3、情感态度目标:

◆培养学生的合作意识和探究意识;

◆使学生获得成功的体验,体验数学与生活的联系。

重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题

难点:探索圆锥体积方法和推导过程。

教学过程:

1 圆锥有什么特征?指名学生回答。

2 说一说圆柱体积的计算公式。

(1)已知 s、h 求 v

(2)已知 r、h 求 v

(3)已知 d、h 求 v

3 我们已经认识了圆锥又学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。

板书课题:圆锥的体积

(一) 教学圆锥体积的计算公式

1、师:请大家回忆一下,我们是怎样得到圆柱体积的计算公式的?

指名学生叙述圆柱体积的计算公式的推导过程:(学生:圆柱---转化长方体- 长方体的体积公式----推导圆柱体公式)

2、 教师:那么圆锥的体积该怎样求呢?能不能也通过学过的图形来求呢?

先让学生讨论,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式

〈1〉学生独立操作

让两名学生到讲台上做实验其他学生观察,拿出等底等高的圆柱和圆锥各1个,比圆柱体积多的水。先在圆锥里装满水,然后倒入圆柱。看几次正好把圆柱装满?

〈2〉教师教具演示巩固学生的操作效果,cai课件演示

a 屏幕上出示等底、等高

b 等底、不等高

c 等高、不等底

实验报告单

实验器材

实验结果

等底不等高的圆锥、圆柱

等高不等底的圆锥、圆柱

等底等高的圆锥、圆柱

〈3〉引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积等于和它等底等高圆柱体积的 1/3 (板书 )

用字母表示圆锥的体积公式.v锥=1/3sh

做一做:

填空:

等底等高的圆锥和圆柱,圆柱的体积是圆锥的体积的( ),圆锥的体积是圆柱的体积的( )已知圆锥的"体积是9立方分米,圆柱的体积是( );
如果圆柱的体积是12立方分米,那么圆锥的体积是( )。

(二)运用公式,尝试练习

1、要求圆锥的体积,必须知道哪两个条件?为什么要乘 1/3 ?

试一试:

一个圆锥体,底面积是19平方米, 高是12分米。这个圆锥的体积是多少?《圆锥的体积》教学设计 相关内容:第四单元 圆 全单元教案六下第一单元 负数 教材分析《圆锥的认识》说课《分数乘分数》教后反思《纳税》教案 人教版第十一册教案百分数(五)折 扣圆柱的表面积第三单元分数除法:分数除法的意义和整数除以分数查看更多>> 小学六年级数学教案

2、思考:求圆锥的体积,还可能出现那些情况?

(如果已知圆锥的高和底面半径如果已知圆锥的高和底面半径(或直径、周长),怎样求圆锥的体积呢?)

练一练

3、求下面的体积。(只列式不计算)

(1)底面半径是2 厘米,高3厘米。

3.14×22×3

(2)底面直径是6分米,高6分米 。

3.14×(6 ÷2)2 ×6

(3)底面周长是12.56厘米,高是6厘米

3.14×(12.56 ÷6.28)2 ×6

2、求下面各圆锥的体积如图(单位厘米)

(1)底面直径是8分米,高9分米 (2)底面半径3分米和高7分米

通过公式我们发现计算圆锥的体积所必须的条件可以是底面积和高

a、底面积和高

b、底面半径和高

c、底面直径和高

d、底面周长和高

1、判断:

⑴、圆锥的体积等于圆住体积的1/3。( )

⑵把一个圆柱切成一个圆锥,这个圆锥的体积是圆柱体积的1/3 ( )

⑶圆柱的体积比和它等底等高圆锥的体积大2倍。( )

⑶一个圆柱与一个圆锥的底面积和体积相等,那么圆锥的高是圆柱高的

2、填空

⑴一个圆锥与一个圆柱等底等高,已知圆锥的体积是 18 立方米,圆柱的体积是( )。

⑵一个圆锥与一个圆柱等底等体积,已知圆柱的高是 12 厘米, 圆锥的高是( )。

⑶一个圆锥与一个圆柱等高等体积,已知圆柱的底面积是 314 平方米,圆锥的底面积是( )。

3、拓展练习

工地上有一些沙子,堆起来近似于一个圆锥,通过测量它的直径是4厘米高是1.2厘米,这堆沙子大约多少立方米?(得数保留两位小数)

(引导学生说出怎样测量沙堆的底面的周长、直径、和高。)

用两根竹竿平行地放在沙堆两侧,测得两根竹竿间的距离,就是直径。将一根竹竿过沙堆的顶部水平位置,另一根竹竿竖直与水平竹竿成直角即可量得高。

圆锥的体积教学设计说明篇十

《数学课程标准》指出:“学生学习应当是一个生动活泼的、主动且富有个性的过程。除接受学习外,动手实践、自主探索与合作交流同样是学习数学的重要方式。”根据六年级学生基本都有较强的实验操作能力和空间想象能力这一特点,在教学圆锥体积计算公式的推导时,一改以前教师演示或在教师指令下做试验的方式,采取给学生提供材料和机会,引导学生自主探究的学习方式进行教学。具体表现在以下几个方面:

1.注意激发学生的求知欲。

上课伊始,通过精心设计的问题引发学生深入思考,激发学生的学习兴趣。在推导公式的过程中,通过引导学生探讨试验方法,使学生的学习兴趣保持高涨。在解决问题时,通过“扶”而不是“包办代替”,使学生在自主分析问题、解决问题中,真实感受到成功的喜悦。

2.注意以学生为学习活动的主体。

教学中,为学生提供动脑、动手的空间,使学生充分参与获取知识的全过程,在分组观察、实验操作、测量等基础上,自主推导出圆锥的体积计算公式。

3.在学习过程中教给学生科学的探究方法。

“提出问题——直觉猜想——试验探究——合作交流——试验验证——得出结论——实践运用”是探究学习的一个基本方法,教学中,为学生搭建探究学习的平台,促使学生在这样的过程中掌握知识,获得广泛的数学活动经验和思想方法,发展学生的反思意识和自我评价意识。同时,课堂中,启发学生提问、猜想、动手实践,培养学生解决问题的能力。

教师准备ppt课件铅锤

学生准备等底、等高的圆柱形容器和圆锥形容器沙子或水

⊙问题导入

1.提问激趣。

师:怎样计算这个铅锤的`体积?(出示铅锤)

预设

生:可以用“排水法”。把铅锤放入盛水的量杯中(水未溢出),根据水面的先后变化求出铅锤的体积。

师:怎样求出沙堆的体积?(课件出示例3沙堆图)

预设

生1:用“排水法”好像不行。

生2:把圆锥形沙堆改变形状,堆成正方体,测出它的棱长后计算它的体积。

生3:把圆锥形沙堆改变形状,堆成长方体,测出它的长、宽、高后计算它的体积。

生4:把圆锥形沙堆改变形状,堆成圆柱,测出它的底面周长和高,求出它的底面积后计算它的体积。

2.导入新知。

师:大家都想到了用“转化”的方法求这堆沙子的体积,但如果我们在计算沙堆体积之前,必须把沙子重新堆放成以前学过的几何形体,这样做又麻烦又不容易成功,看来我们还需要寻求一种更普遍、更科学、更便利的求圆锥的体积的方法。(板书课题:圆锥的体积)

设计意图:通过提出问题,引发学生的认知冲突,激发学生的求知欲,培养学生自主探究的意识,感受学习数学的必要性。

⊙探究新知

1.猜一猜:圆锥的体积可能与哪种立体图形的体积有关?

(学生大胆猜想,可能与圆柱的体积有关)

2.探究圆锥的体积要借助一个什么样的圆柱来研究这一问题呢?

学生经过讨论、交流并说出观点:应该选择一个与这个圆锥等底、等高的圆柱更为合适。

3.课件出示等底、等高的圆柱和圆锥。

引导学生想一想它们的体积之间会有什么样的关系。

4.方法指导。

议一议:怎样借助等底、等高的圆柱和圆锥来探究圆柱和圆锥的体积之间的关系呢?

(各组同学准备好等底、等高的圆柱、圆锥形容器)

预设

生1:把圆柱形容器装满水,再倒入圆锥形容器中,看可以正好装满几个圆锥形容器。

生2:把圆锥形容器装满沙子,再倒入圆柱形容器中,看正好几次可以倒满。

生3:选用一组等底、等高的圆柱模型和圆锥模型,先用“排水法”分别求出圆柱和圆锥的体积,再算出圆柱体积是圆锥体积的几倍,并发现两者之间的关系。

5.操作交流。

(1)分组试验。

请同学们分组试验。(学生试验,教师巡视指导)

(2)交流、汇报。

师:谁能汇报一下自己小组的试验结果?

预设

生:在圆柱和圆锥的底面积相等、高相等的情况下,将圆锥形容器装满沙子向圆柱形容器里倒,倒了3次,正好倒满。

师:通过试验,你发现等底、等高的圆柱和圆锥的体积之间有什么关系?

预设

生1:圆锥的体积是与它等底、等高的圆柱的体积的。

生2:圆柱的体积是与它等底、等高的圆锥的体积的3倍。

6.推导公式。

师:结合自己的试验结果,说一说计算圆锥的体积时需要知道什么条件。

预设

生1:需要知道与圆锥等底、等高的圆柱的体积是多少。

生2:知道圆锥的底面积和高也可以求出圆锥的体积。

师:你认为圆锥的体积计算公式是什么?

圆锥的体积教学设计说明篇十一

《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。

1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。

2、能运用公式解答有关的实际问题。

教学重点:圆锥体积的计算公式

教学难点:圆锥的体积公式推导。

课件

一、谈话引入

今天,我们来学习圆锥的体积公式是怎样推导出来的?

二、自主探索,操作实验

下面,我们一起来做个小实验

(1)取一个圆柱体的容器和圆锥体的容器各一个。让学生观察一下,得出:这两个容器等底等高。

(2)往圆锥体容器中装满水,倒入圆柱体的容器中,一连倒入三次,这时候圆柱体的容器中装满水。

(3)这两个容器等底等高,通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?

引导学生观察:圆柱的体积的三分之一等于圆锥的体积,而圆柱的体积等于底面积乘高,圆柱体积的三分之一用底面积乘高乘三分之一表示,因为圆柱体积的三分之一等于圆锥的体积,所以推导出圆锥的体积等于底面积乘高乘三分之一。用字母表示:v=1/3sh

三、练习填空

1、圆锥的体积=(),用字母表示是()。

2、圆柱体积的与和它()的圆锥的体积相等。

3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

学生练习,教师总结。

四、巩固练习:

求下面各圆锥的体积,只列算式。(单位:厘米)

观察第一个图形告诉底面半径和高,要先求出底面积,然后根据圆锥的体积公式带入数字。第二个图形告诉底面直径和高,要先求出底面半径,再求底面积,然后根据圆锥的体积公式带入数字。

五、运用所学的知识解决实际问题

一堆大米,近似于圆锥形,量得底面周长是18、84米,高6米。它的体积是多少立方米?一堆大米,近似于圆锥形,量得底面周长是18、84米,高6米。它的体积是多少立方米?

学生思考,教师讲解:

先求半径:18、84÷ 3、14 ÷ 2=3(米)

再求底面积:3、14×3=28、26(平方米)

求圆锥体积:1/3×28、26×6=56、52(立方米)

最后求大米的重量:56、52×500=28260(千克)

六、计算圆锥的"体积所必须的条件

学生思考,教师归纳总结

计算圆锥的体积所必须的条件可以是:

底面积和高

底面半径和高

底面直径和高

底面周长和高

只要知道啦其中的两个条件,就可以求出圆锥的体积。

微课学习指导

本微课的教学内容为《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

微课视频共8分53秒,前18秒为片头,后面是利用圆柱的体积推导出圆锥的体积,利用实验推导的过程及练习巩固的过程。

配套学习资料

圆柱的体积公式

圆柱的体积公式等于底面积乘高,用字母表示:v=sh

微课制作技术

1、使用ppt制作片头。

2、使用手机摄录视频效果。

3、使用camtasia studio软件和会声会影软件进行后期的混音制作和整合。

4、使用格式工厂进行最后的格式转换。

教学需求分析

适用对象分析:适用于六年级下册的学生,在学习了圆柱的体积之后才能学习此内容。

学习内容分析:《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

学习目标分析:

(1)通过动手操作参与实验,发现等底等高的圆柱圆锥体积之间的关系,从而得出圆锥体积的计算公式。

圆锥的体积教学设计说明篇十二

使学生系统掌握关于圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系,熟练运用所学公式计算解答实际问题;

幻灯片、电脑制图

一、出示课题,引人复习内容;

1.同学们,今天这节课,我们要进行圆柱体和圆锥体体积的复习;

板书课题

2.圆柱体的体积怎么求?

板书:v圆柱=sh

3.圆锥体的体积怎么求?

板书:v圆锥=1/3 sh

4.公式中的s、h分别表示什么?1/3表示什么?

小结:求圆柱体和圆锥体的"体积,首先要正确应用公式。

板书:正确应用公式

当题目中没有直接告诉我们底面积,只给出底面的半径、直径或周长时,求它们的体积必须先求出什么?

二、基础练习

根据已知条件求圆柱体和圆锥体的底面积(幻灯出示)

计算这些形体的体积:

(1)s底=1.5平方米h=5米求v圆柱

(2)s底=1.5平方米h=5米求v圆锥

(3)r=10分米h=2米求v圆柱

(4)c=6.28米h=6米求v圆锥

(1)、 (2)两题条件相同,所求不同;

板书:2.圆锥体积一定要乘1/3

(3)、 (4)两题都要先求出底面积;

板书:单位名称要统一

三、实际应用练习:

我们还可应用到生活中去解决一些实际问题:(幻灯出示)

1.一根圆柱形钢材长2米,底面周长为6.28厘米,如果1立方厘米钢重8克,100根这样的钢材重多少千克?

默读后问同学:做这道题前有没有准备工作要做?(单位要统一)

2.一个圆锥形麦堆,底面直径4米,高1.5米,按每立方米麦重700千克算,这堆麦重多少千克?

默读后问同学:要注意麦堆是什么形状?

请两位同学板演,其余在本子上自练;

3.小结:在解这两题时都用到了什么计算?

四、提高练习:

(幻灯出示)在一只底面半径为30厘米的圆柱形水桶里,放入一段底面半径为10厘米的圆锥形钢材,水面升高了5厘米,这段钢材高为多少?

(电脑出示图案)观察水面变化情况,求什么?

1.钢材是什么形状?求圆锥体的高用什么方法?h=3v/s,3v表示什么?

2. s可以通过哪个条件求?(r=10厘米)

3.体积是什么呢?(电脑屏幕逐步演示)

(1)当钢材放入时水面上升,取出时水面下降,和什么有关?

(2)放入时水面为什么会上升?

(3)圆锥体占据了水桶里哪一部分水的体积?

(4)上升的水的体积等于什么?

(5)求圆锥形钢材的体积就是求什么?

(6)求这部分水的体积可通过哪些条件求?(r=30厘米,h=5厘米)

(7)板演,同学自练;

五、圆柱体、圆锥体之间的关系是很密切的,下面我们来研究一下:(电脑出示画面、公式)

1.当圆柱体与圆锥体等底等高时,圆柱的体积是圆锥体积的3倍;
(逆向)

2.当圆柱体与圆锥体体积相等,底面积相等时,圆锥的高是圆柱的3倍;

3.当圆柱体与圆锥体体积相等,高也相等时,圆柱的底面积是圆锥底面积的1/3,圆锥底面积是圆柱底面积的3倍。

六、总结:

这节课我们复习了什么?

圆锥的体积教学设计说明篇十三

第25~26页,例2、例3及练习四的第3~8题。

1、通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

掌握圆锥体积的计算公式。

正确探索出圆锥体积和圆柱体积之间的关系。

圆锥与等底等高的圆柱,圆锥与不等底等高的圆柱。

一、复习

1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

2、圆柱体积的计算公式是什么?

指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

二、新课

1、教学圆锥体积的计算公式。

(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的

(2)能不能也通过已学过的图形来求呢?圆锥的体积可能和什么图形的体积有关?圆锥的体积该怎样求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的)还可以怎么说?

板书:圆锥的`体积=1/3×圆柱的体积=1/3×底面积×高,字母公式:v=1/3sh

拿不等底等高的圆柱与圆锥进行实验。为什么倒3次不能刚好倒,和刚才不一样呢?

强调:“等底等高”。

问:sh表示什么?为什么要乘1/3?

练习:一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

一个圆锥的体积是15立方厘米,与它等底等高的圆柱的体积是多少?

2、教学练习四第3题

(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

说明:不要漏乘1/3,计算时能约分的要先约分。

3、巩固练习:完成练习四第4题。

4、教学例3

(1)出示例3

已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上,做完后集体订正。(注意学生最后得数的取舍方法是否正确)

三、巩固练习

1、做练习四的第7题。

学生先独立判断这三句话是否正确,然后全般核对评讲。

2、做练习四的第8题。

(1)引导学生学生思考回答以下问题:

①这道题已知什么?求什么?

②求圆锥的体积必须知道什么?

③求出这堆煤的体积后,应该怎样计算这堆煤的重量?

(2)让学生做在练习本上,教师巡视,做完后集体订正。

3、做练习四的第6题。

(1)指名学生先后回答下面问题:

①圆柱的侧面积等于多少?

②圆柱的表面积的含义是什么?怎样计算?

③圆柱体积的计算公式是什么?

④圆锥的体积公式是什么?

(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

四、总结

这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

俗话说“眼见为实”,所以相对于课件演示而言,教师在全班演示会更直观,结论也更具信服性。

俗话又说“纸上得来终觉浅,绝知此事要躬行”,所以相对于看教师演示与自己亲自动手实验,亲身经历探究印象会更深刻。

课堂如果以4——6人小组为单位进行实验,全班至少得有9套以上教具。可我校现有教具数量不够。如果要求学生课前自制教具,他们暂时无法制作出与圆柱等底等高高的圆锥。所以只好改为教师演示,学生观察。

仅用一次实验就得出结论是不严谨的,所以课堂上必须让学生历经多次不同实验后才能得到正确结论。根据学校现有教具,今天我准备了两套不同大小的等底等高圆柱、圆锥作为器材。在实验中,我不仅让学生清晰地看到将圆锥内的水倒3次可以注满与它等底等高的圆柱,同时,还让他们看到圆柱内的水再反倒回等底等高的圆锥时要倒3次。不仅自己示范演示,也让学生参与演示实验。最后,我还用不等底等高的圆柱与圆锥做实验,强调实验结果只有在“等底等高”的条件下才能成立。因为实验环节落实较好,全班作业正确率高。

圆锥的体积教学设计说明篇十四

本节课的教学内容是圆锥体积公式的推导,是一节几何课,新课程标准指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程。

(一)教学内容分析:

1、教材内容:

本节教材是在学生已经掌握了圆柱体体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

2、研读完教材后,自己的`几个问题:

(1)在教学的过程中如何将圆锥体积推导过程与圆柱构建起联系,还不会使学生感到生硬?

(2)学生对三分之一好理解,怎样去认识是等底等高的柱、锥。

(3)大家都知道本节课必少不了学生的操作,怎么操作才是有效操作?怎么操作才能满足学生的求知欲?怎么操作才能使学生更好体验这个过程?

(4)本节课的教学内容只能挖掘到圆锥的体积吗?能不能再深入一些?

3、自己的创新认识:

首先,研读教材后,我认为这几个问题的根本是一致的都是要把握住“谁在学?怎么学?”首先,在设计本节课时我想不只是让学生学会一个公式,而是学会一种数学学习的方式,一种数学学习的思想,体验一种数学学习的过程。

其次,是要提供给同学们一个可操作的空间。

(二)学情分析:

1、学生在前面的学习中对点、线、面、体有一定的基础知识,同时也获得了转化、对应、比较等数学思想。尤其是对于高年级段的同学来讲他们获取知识的渠道十分丰富,自己又有一定探究能力,对于圆锥体积的知识相信是有一定认识的,在进行教学设计前我们应该了解到他们认识到哪儿了?了解学生的起点,为制定教学目标和选择教学策略做好准备。

2、自己的认识:(结合自己在讲课时发现的问题而谈)

学生能够根据以前的学习经验圆柱和圆锥的底面都是圆形认识到二者之间存在一定联系,而且又是刚学完圆柱学生认识到这一点看来并不难,难的是等底等高。因此,在教学设计过程中要注意柱、锥间联系的设计,突破学生对“圆锥的体积是与它等底等高的圆柱体积的三分之一”中的“等底等高”。

(三)教学方式与教学手段分析:

根据本节课的教学内容及特点,在教学设计过程中我选择了 “操作——实验”的学习方式。学习任何知识的最佳途径是由自已去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”我认为这也正是我在设计这节课中所要体现的核心内容。第一次学习方式的指导:体现在出示生活情境后,先让学生进行大胆猜测“买哪个蛋糕更划算”。本次学习方式的指导是通过学生对生活问题进行猜想,使学生认识到其中所包含的数学问题,并由此引导学生再想一想你有什么解决方法。

(四)技术准备与教学媒体:

在创设情境中利用多媒体出示主题图,然后要从图中剥离出图形来,并演示整个实验过程。

(一)教学目标:

1、使学生掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

2、通过操作——实验的学习方式,使学生体验圆锥体积公式的推导过程,对实验过程进行正确归纳得到圆锥的体积公式,能利用公式正确计算,并会解决简单的实际问题。

3、培养学生的观察、分析的综合能力。

(二)教学重点:理解圆锥体积的计算公式并能运用圆锥体积公式正确地计算圆锥的体积

(三)教学难点:通过实验的方法,得到计算圆锥体积的公式。

猜你喜欢