首先是在建筑工程的施工过程中如果出现地基上部土体性质较为软弱、同时下部土体深处土体性质较为坚硬时,这种土体情况是较为适宜使用桩基础施工技术的情况类型之一,但值得注意的是如果在建筑地基土体的整体深度中土下面是小编为大家整理的2023年桩基础技术论文【五篇】【精选推荐】,供大家参考。
桩基础技术论文范文第1篇
首先是在建筑工程的施工过程中如果出现地基上部土体性质较为软弱、同时下部土体深处土体性质较为坚硬时,这种土体情况是较为适宜使用桩基础施工技术的情况类型之一,但值得注意的是如果在建筑地基土体的整体深度中土体上部的软弱土体类型较厚而桩基础的最深深度无法有效的触碰到土体下部的坚硬土体时则需要充分考虑到桩基础施工过程中的沉降问题,需要将桩基础施工技术使其能够通过桩基础有效的将何在传到下方的软弱土体层中,在实际的施工过程中施工单位一定要密切注意这一点,保证桩基础施工技术确实得到了有效的发挥。其次是在建筑工程的施工过程中不允许地基出现较大的沉降现象或者是存在不均匀沉降现象的高层建筑项目的施工过程中,这种情况下也是桩基础施工技术能够有效发挥其相关性质性能的最佳施工现场之一,桩基础施工技术能够在这种情况下有效的提升建筑结构的承载力以及水平应力,防止高层建筑结构在施工过程中出现倾斜现象,在这一过程中也应该密切注意做好桩基础施工过程中桩基础沉降现象的控制工作,确保桩基础施工技术确实较好的发挥其相关功能。
二、建筑工程施工过程中桩基础技术的实践应用
1.灌注桩施工技术在建筑工程施工过程中的实践应用灌注桩施工技术在建筑工程施工过程中的实践应用可以分为沉管灌注桩、钻孔灌注桩以及挖孔桩基础施工技术三种,其中沉管灌注桩施工技术指的是在建筑工程的施工过程中利用冲击力将桩基础直接打入地基土体中,具有施工设备操作简单、施工工艺快捷方便以及施工成本投入较低等优点,但是相应的缺点是在沉管灌注桩的施工过程中对桩基础施加的打击力很容易就导致桩基础本身材料的损害,因此在施工过程中控制好桩锤的力度是施工单位在沉管灌注桩施工过程中应该必须做好的工作内容;钻孔灌注桩则是指在建筑工程施工过程中使用机械钻孔的方式完成对桩基础成孔工作,继而在桩孔中完成对灌注桩的混凝土浇筑和保养工作,使灌注桩、混凝土以及土体形成三者结合的新型土体材料,有效的完成对建筑工程土体性质改造的目的。钻孔灌注桩施工技术是当前建筑工程施工过程中常用的灌注桩施工技术类型,施工单位在钻孔灌注桩施工应用的过程中应该注意做好对桩孔彼此之间间距的控制工作,保证相邻的桩孔施工不会形成相互干扰,保证桩孔成孔过程中的深度、垂直度以及相关参数,进而保证钻孔灌注桩施工技术的性能得到有效发挥;挖孔桩技术则是指在建筑工程的施工过程中直接使用人工劳动力完成对桩孔的挖掘工作,进而在建筑工程的施工过程完成灌注桩的浇灌以及保养工作,人工挖孔桩技术虽然节约了设备使用过程中的经济投入,但是桩孔的精度得不到有效的控制同时还付出了大量的人力物力以及时间,事实上对建筑工程施工过程中的质量是有一定的影响的,因此已经渐渐被建筑行业所淘汰。
2.预制桩施工技术在建筑工程施工过程中的实践应用预制桩指的是在建筑工程桩孔技术施工之前就根据建筑工程对桩基础的实际需求完成对桩体的提前制定工作,在完成桩基础的预制工作以后直接使用打桩设备将桩基础打入地层之中已完成桩基础施工技术的应用工作。预制桩施工技术在建筑工程施工过程中的应用包括混凝土预制桩以及钢预制桩两种类型,其中混凝土预制桩具备坚固耐久、施工快捷的优点因此是当前预制桩施工技术的主流应用类型。预制桩的打入过程中会使用静力沉桩、振动沉桩以及射水沉桩等等技术,施工单位应该合理的做好对打入桩技术的控制工作。
三、结语
桩基础技术论文范文第2篇
关键词: 基础桩基 地基处理; 复合地基发展前景
1地基处理技术及分类
地基处理技术分类方法很多, 按照加固地基的机理,常将地基处理技术分为六类: 置换, 排水固结, 振密、挤密, 灌入固化物, 加筋和冷、热处理。可以将采用各类地基处理方法处理形成的人工地基分为两类: 一类是天然地基土体的物理力学性质得到普遍的改良, 类似于均质地基。这类人工地基的承载力和沉降计算方法同天然地基, 不同的是地基土层的物理力学指标得到改善。另一类是在地基处理过程中部分土体得到增强, 或被置换, 或在天然地基中设置加筋材料, 形成复合地基。例如: 采用振冲置换法, 强夯置换法, 砂石桩置换法, 石灰桩法, 深层搅拌法, 高压喷射注浆法, 振冲密实法, 挤密砂石桩法, 土桩、灰土桩法, 夯实水泥土桩法,孔内夯扩桩法, 树根桩法, 低强度桩复合地基法, 钢筋混凝土桩复合地基法等, 均可形成复合地基。
复合地基在地基处理中的应用非常广泛, 而且呈发展趋势。浅基础的设计计算理论比较成熟, 而复合地基设计计算理论正在发展之中。从上述分析可以看到重视复合地基理论研究的必要性和重要性。同时也应该看到, 复合地基理论和实践的发展将进一步促进地基处理水平的提高。复合地基技术在地基处理技术中有着非常重要的地位。
2复合地基与双层地基
有的学者将复合地基视为双层地基, 将双层地基有关计算方法应用到复合地基计算中。事实上, 复合地基与双层地基在荷载作用下的性状有较大区别, 在复合地基计算中直接应用双层地基计算方法是不妥当的, 有时是偏不安全的, 下面作简要分析。
图1 ( a) 、( b) 分别为复合地基和双层地基的示意图。设复合地基加固区复合模量为E1 , 其他区域土体模量为E2 , 显然El > E2。设双层地基的上层土体模量为E1 , 下层土体模量为E2。双层地基上层土厚度与复合地基加固区深度相同, 记为H。以条形基础为例, 地基上荷载作用面宽度均为B而且荷载密度相同。现分析在荷载作用中心线下复合地基加固区下卧层中A点[见图1 ( a) ] 和双层地基中对应的B点[见图1 ( b) ] 竖向应力情况。不难看出复合地基A点竖向应力σA , 比双层地基中B点竖向应力σB大。如果增大El /E2值, 则σA值增大, 而σB值减小。理论上当El /E2趋向∞时, 双层地基中B点竖向应力σB趋向零,而复合地基A点竖向应力σA是不断增大的。由上述分析可以看出复合地基与双层地基在荷载作用下地基性状的差别是很大的。
图1复合地基与双层地基
根据前面分析, 在荷载作用下双层地基与复合地基中附加应力场分布及变化规律有着较大的差别, 将复合地基认为双层地基, 低估了深层土层中的附加应力值, 在工程上是偏不安全的。
3复合地基与浅基础及桩基础
当天然地基能够满足建筑物对地基的要求时, 通常采用浅基础; 当天然地基不能满足建筑物对地基的要求时,需要对天然地基进行处理形成人工地基以满足建筑物对地基的要求。桩基础是软弱地基最常用的一种人工地基形式。广义地讲, 桩基技术也是一种地基处理技术, 而且是一种最常用的地基处理技术。考虑桩基技术比较成熟, 而且已形成一套比较全面、系统的理论, 通常将桩基技术与地基处理技术并列, 在讨论地基处理技术时一般不包括桩基技术。采用的地基处理方法不同, 天然地基经过地基处理后形成的人工地基性态也不同。经过地基处理形成的人工地基多数可归属为两类: 一类是在荷载作用范围下的天然地基土体的力学性质得到普遍的改良, 如通过预压法、强夯法, 以及换填法等形成的土质改良地基。这类人工地基承载力与沉降计算基本上与浅基础相同, 因此可将其划归浅基础。另一类是在地基处理过程中部分土体得到增强, 或被置换, 或在天然地基中设置加筋材料, 形成复合地基。例如水泥土复合地基、碎石桩复合地基、低强度混凝土桩复合地基等。根据上述分析, 浅基础、复合地基和桩基础已成为工程建设中常用的三种地基基础型式。
在浅基础中, 上部结构荷载是通过基础板直接传递给地基土体的。按照经典桩基理论, 在端承桩桩基础中, 上部结构荷载通过基础板传递给桩体, 再依靠桩的端承力直接传递给桩端持力层。不仅基础板下地基土不传递荷载,而且桩侧土也基本上不传递荷载。在摩擦桩桩基础中, 上部结构荷载通过基础板传递给桩体, 再通过桩侧摩阻力和桩端端承力传递给地基土体, 而以桩侧摩阻力为主。经典桩基理论不考虑基础板下地基土直接对荷载的传递作用。虽然客观上大多数情况下摩擦桩桩间土是直接参与共同承担荷载的, 但在计算中是不予以考虑的。在复合地基中,上部结构荷载通过基础板直接同时将荷载传递给桩体和基础板下地基土体。对散体材料桩, 由桩体承担的荷载通过桩体鼓胀传递给桩侧土体和通过桩体传递给深层土体。对粘结材料桩由桩体承担的荷载则通过桩侧摩阻力和桩端端承力传递给地基土体。
由上面分析可以看出, 浅基础、桩基础和复合地基的分类主要是考虑了荷载传递路线。荷载传递路线也是上述三种地基基础型式的基本特征。简而言之, 对浅基础, 荷载直接传递给地基土体; 对桩基础, 荷载通过桩体传递给地基土体; 对复合地基, 荷载一部分通过桩体传递给地基土体, 一部分直接传递给地基土体。通过上述对浅基础、复合地基和桩基础荷载传递路线的分析, 可以认为复合地基是界于浅基础和桩基础之间的。摩擦桩基础中考虑桩间土直接承担荷载的作用, 也可属于复合地基。或者说考虑桩同作用也可将其归属于复合地基。
4复合地基与复合桩基
在深厚软粘土地基上按桩基理论设计摩擦桩基础时,为了节省投资, 管自立(1989年) 采用稀疏布置的摩擦桩基(桩距一般在5倍~6倍桩径以上) , 并称为疏桩基础。疏桩基础比按桩基理论设计的常规摩擦桩基础, 沉降量大,但考虑了桩间土对承载力的直接贡献, 以较大的沉降换取工程投资的节约。事实上桩基础的功能主要有两方面: 一方面可以提高承载力, 另一方面可以减小沉降。以前人们往往侧重利用采用桩基解决地基承载力不足的问题, 不重视采用桩基可以减小地基沉降的功能。将用于以减小沉降量为目的桩基础称为减少沉降量桩基。这里减小沉降量桩基一般是指摩擦桩基。减小沉降量桩基设计中考虑了桩同作用。在疏桩基础和减小沉降量两类桩基础中, 均考虑了桩和同承担荷载。事实上, 筏板基础下的摩擦桩基, 桩间土一般直接承担一部分荷载, 在经典桩基理论中只不过是主观上不考虑而已。以前主观上不予考虑的原因可能认为桩间土承担荷载比例小, 不值得考虑, 也可能是主动将其作为一种安全储备。还有一种可能是考虑到计算较困难, 不确定因素较多而不予考虑, 而且在工程上是偏安全的。近年来发展起来的桩同作用分析, 主要也是考虑桩间土直接承担荷载。在疏桩基础、减小沉降量桩基和考虑桩同作用的思路中都是主动考虑摩擦桩基础中客观上存在的桩间土直接承担荷载的性状。考虑桩同直接承担荷载的桩基称为复合桩基。是否可以说复合桩基实质上是主动考虑桩间土直接承担荷载的摩擦桩基, 而在经典桩基理论中, 摩擦桩基中是不考虑桩间土直接承担荷载的。
事实上也可以将复合桩基视为复合地基一种, 或者说将其归属复合地基, 有助于对复合桩基荷载传递规律的认识, 也有益于复合桩基理论的发展。
5复合地基技术发展前景
复合地基与浅基础及桩基础已成为土木工程建设中常用的三种基础形式。采用复合地基可以较充分利用天然地基和增强体两者的潜能, 具有较好的经济性。采用复合地基可以通过调整增强体的刚度、强度和复合地基置换率等设计参数以满足地基承载力和控制沉降量的要求, 具有较大的灵活性。因此复合地基具有一定的优势。展望复合地基的发展, 笔者认为, 在复合地基计算理论、复合地基形式、复合地基施工工艺、复合地基质量检测等方面都具有较大的发展空间, 都有很多工作需要做。复合地基的发展需要更多的工程实践积累, 需要工程实录的研究, 需要理论上的探索, 需要设计、施工、科研和业主单位共同努力。在复合地基计算理论方面, 既包括复合地基承载力和沉降计算的一般理论, 又指各种形式的复合地基承载力和沉降计算理论和方法。要发展各种形式的复合地基承载力和沉降计算理论, 需要加强对各种形式的复合地基荷载传递机理的研究, 进一步了解基础刚度, 桩土相对刚度, 复合地基置换率, 复合地基加固区深度、荷载水平等对复合地基应力场和位移场的影响, 提高各类复合地基应力场和位移场的计算精度。复合地基承载力和沉降计算水平的提高还有赖于工程实录的增加, 经验的总结。在发展复合地基计算理论中, 特别要重视沉降计算理论的发展。对桩体复合地基要发展按沉降控制计算理论, 特别要提高桩体复合地基沉降计算精度。强调提高沉降计算精度, 主要考虑下述两点: 其一, 不少工程采用复合地基主要是为了控制沉降; 其二, 前些年采用复合地基不当造成的工程事故主要是没有能够有效控制沉降。因此, 只有强调提高各类复合地基沉降计算水平, 才能较好地发展复合地基计算理论,有利于复合地基技术的推广。
与桩体复合地基相比较, 加筋土地基目前较多应用于提高地基稳定性, 要继续加强加筋土地基稳定性研究。加筋土地基沉降工程实录比桩体复合地基沉降工程实录要少,加筋土地基沉降计算更加复杂, 但也要对它进一步探索。当加筋土地基应用于深厚软弱地基时, 加筋土地基加固区软弱下卧层的厚度对加筋土地基的长期沉降影响是值得研究的课题。
近几年发展较快的是各类低强度桩复合地基在工程中应用。在工程中应用最多的是低强度混凝土桩复合地基。各类低强度桩复合地基的基本思路是让由桩身材料强度决定的桩承载力和由桩侧摩阻力提供的桩承载力两者靠近,以达到充分利用材料本身承载潜能的目的, 或者说是应用等强度设计的概念。低强度混凝土桩施工方便, 发展更快。对低强度桩复合地基在工程中应用的快速发展建议予以重视。
复合地基中桩体采用长短桩设置符合荷载作用下附加应力场的分布特征, 桩体受力合理, 对提高复合地基承载力和减少沉降都有好处。长短桩复合地基设计中应重视长短桩的协同作用, 重视长短桩复合地基的形成条件。长短桩复合地基中的长桩和短桩不仅在施工阶段要能够保证协同作用, 而且在工后阶段也要保证协同作用。在地基产生大面积沉降的情况下, 也要能保证长桩和短桩协同作用。总之长短桩复合地基的形式很好, 但要重视其应用条件,重视长短桩复合地基的形成条件, 保证长桩和短桩能长期协同作用, 需要合理设计。
随着多种复合地基形式的出现, 复合地基施工工艺也得到了很大发展。近年来多种形式的孔内夯扩桩的出现就是证明。渣土桩技术、夯实水泥土桩技术、冲锤成孔碎石桩技术、强夯置换碎石墩技术等发展很快。低强度桩施工工艺也在不断发展, 另外, 增强体材料在充分利用地方材料, 消除环境影响方面也有很大发展。
随着多种复合地基技术的应用, 复合地基质量检测近年来也得到发展。但相比较复合地基质量检测方面存在的问题和困难多一些, 需要继续努力。作为复合地基整体质量检测, 不仅是桩体质量检测, 还应包括桩间土的测试,以及桩土复合体的性能测试。
6结语
桩基础技术论文范文第3篇
关键词:工业厂房、地基基础、桩基础、土建施工
中图分类号:[F287.2] 文献标识码:A 文章编号:
一、前言
随着我国经济建设进程的不断加快,我国的工业建设得到了极大的发展。就整个工业厂房建设施工来说,地基基础、加固技术等土建施工在工程建设里起着至关重要的作用,直接影响到建筑工程的整体质量以及安全使用年限。因此,工程设计和建设施工人员必须高度重视工业厂房的地基基础和加固技术,对这方面内容加以分析与研究就成为了相关工作人员当前研究的重要课题之一。
二、工业厂房地基基础与加固技术的概述
从理论上来说,对工业厂房中地基基础与加固技术进行深入的概念研究,有助于相关工作人员及时、准确地把握相关施工信息,做好建筑施工工作。具体来说,主要有以下几个方面。
1、就工业厂房而言,对其地基基础的概述主要可以从以下两个方面来入手进行分析。
(1)地基
一般来说,地基是指存在于建筑物下方、支撑着整个建筑物正常运行的那部分土层或岩石。
(2)基础
基础是指在建筑物运行状态下,为了能够将其全部重量安全、准确地传递到地基中,从而将建筑物与基地接触面部分的尺寸作出适宜的调整,而被调整的这部分就称为基础。作为支撑建筑物荷载的地基,必须能防止强度破坏和失稳,同时,必须控制基础的沉降不超过地基的变形允许值。在满足上述要求的前提下,尽量采用相对埋深不大、只需普通的施工程序就可建造起来的基础类型,即天然地基上的浅基础;
地基如果不能满足上述条件,那么就需要对地基进行加固处理,在处理后的地基上建造的基础,称入土地基上的浅基础。当上述地基基础形式均不能满足要求时,则应考虑借助特殊的施工手段,采用相对埋深大的基础形式,即深基础(常用桩基),以求把荷载更多地传到深部的坚实土层中去。
工业厂房加固技术是指在地基基础无法满足建筑施工要求时,利用胶栓与灌注高强无机性的黏合材料的方法,将各类角钢、钢板与原有的混凝土建筑连接成一个整体,实现对整个建筑工程的加固。这种方法对传统模式下建筑物的负载能力做出了改进,实现了加固材料对施工工程的横向约束作用。
三、工业厂房常见的两种桩基础土建施工技术
桩基础是一种既古老又现代的高层建筑物和重要建筑物工程中被广泛采用的基础形式。桩基础的作用是将上部结构较大的荷载通过桩穿过软弱土层传送到较深的坚硬土层上,以解决浅基础承载力不足和变形较大的地基问题。桩基础具有承载力高,沉降量小而均匀,沉降速率缓慢等特点。它能承受垂直荷载、水平荷载、上拔力以及机器的振动或动力作用,已广泛用于工业厂房、桥梁、水利等工程中。
静力压桩施工技术打桩机打桩施工噪声大,特别是当工业厂房建在离居民点不远处,打桩会影响居民休息,为了减少噪声,可采用静力压桩。静力压桩是在软弱土层中,利用静压力将预制桩逐节压入土中的一种沉桩法。这种方法节约钢筋和混凝土,降低工程造价,而且施工时无噪声、无振动、无污染,对周围环境的干扰小,适用于软土地区、居民点附近或建筑物密集处的工业厂房桩基础工程,以及精密工厂的扩建工程。
2、振动沉桩施工振动沉桩是利用固定在桩顶部的振动器所产生的激振力,通过桩身使土颗粒受迫振动,使其改变排列组织,产生收缩和位移,这样桩表面与土层间的摩擦力就减少,桩在自重和振动力共同作用下沉入土中。振动沉桩设备简单,不需要其他辅助设备,重量轻、体积小、搬运方便、费用低、工效高,适用于在粘土、松散砂土及黄土和软土中沉桩,更适合于打钢板桩,同时借助起重设备可以损桩。打桩开始时,应先采用小的落距(0.5-0.8m)作轻的锤击,使桩正常沉入土中约1-2m 后,经检查桩尖不发生偏移,再逐渐增大落距至规定高度,继续锤击,直至把桩订到设计要求的深度。打桩宜采用“重锤低击”。
四、工业厂房地基基础施工的研究与分析
从理论上来说,工业厂房土建施工中地基基础施工的主要功能,就是将其上部结构中负载加大的那一部分通过不同的形态与方式,从土层较为松软的部位及时、准确地传递到较为坚固的土层中。在现有技术条件下,应用最为广泛的工业厂房地基基础施工技术为桩基础土建施工技术。对这方面内容的分析与研究主要包括以下几个要点。
1、桩基础土建施工技术的概念。桩是一种在地基中人为设立的柱形构建,若干根共同组成桩基础,主要是为上方建筑物的负载从松软土层传递到坚固土层提供传送保障。
2、桩基础土建施工技术的主要工艺。我国在桩基础技术下的地基基础施工中主要应用到的工艺有以下两种:
静力压桩施工工艺。
从理论上来说,静力压桩施工技术是指在土层较为松软的环境中,采用静压力将预制桩依程序、依环节地压入土层中的一种沉桩方法。在实际运作过程中,这种压桩技术不仅可以有效起到对噪声污染的遏制作用,还能够在很大程度上节约钢筋与混凝土等工程材料,从而降低整体工业产房工程造价。
(2)振动沉桩施工工艺。这一技术是指在利用桩顶部振动器运作过程中产生的激振力力量,使桩身上的土颗粒被迫振动,从而产生压缩、位移等运动状态。这种技术所需要耗用的振动沉桩设备比较简单,不仅重量体积都比较小,功效费用比还比较高,将这种技术应用到工业厂房建设中能够有效地达到桩柱深度的相关要求。
五、工业厂房中加固技术的研究与分析
现代建筑工程领域信息科技的不断更新与完善,对建筑工程的施工质量提出了更高的要求,但一些工程的质量事故还是无法完全避免,这在很大程度上造成了意外伤害和工程经济的损失。在实际施工过程中,由于不同地区的地质条件、土层分布、地理环境等因素差异较大,往往就更需要工作人员对具体施工方法加以全面、精确的论证与分析,做到对工程事故的合理处理。就工业厂房施工工程而言,最为关键的是对相关加固技术进行研究与分析。具体而言,主要有以下几个方面的内容。
工业厂房加固技术中的灌浆加固。灌浆加固技术是指工作人员利用钻机在地基基础上成孔至需要加固的土层,将通过灌浆设备合成的水泥化学浆注入地层,再利用各种劈裂、挤压动作,使需要加固的土层与化学浆液产生化学反应,从而形成胶结。利用这一加固技术可以达到改善土层结构与性能的目的,提升工业厂房的整体土体强度。
工业厂房加固技术中的硅化加固。一般来说,当工业厂房选址在渗透性比较强的土层上方时,众多加固技术中选用硅化加固是最为有效的。这种方法利用一定的压力,将浆液通过相关联通设备渗透到土层中,使土层中的颗粒胶结从而达到加固的目的。
3、工业厂房加固技术中的静力压桩加固。从理论上来说,静力压桩加固技术是指在合理运用工业厂房的承重柱的重力作为反作用力的基础上,通过专业的液(油)压设备仪器,将预制桩分程序、分节次地压入土层当中。在静力压桩加固技术的具体施工作业中,值得相关工作人员注意的事项有以下2个方面。
(1)大量的实践研究结果表明,压桩作业是由液(油)压设备进行控制的,当其运作压力达到设计负载压力并且满足计划桩长时,需要及时实施终桩作业。
(2)终桩作业完成后,工作人员需要将压入桩的桩头钢筋与原基础钢筋进行实地焊接,并浇筑砼承台与基础连为一体,据此实现上部结构中相关负载通过桩柱能够直接且无误地传递到加固土层中。
六、结语
综上所述,在工业厂房的施工建设过程中,地基基础与加固技术自始至终都占据至关重要的位置。相关工作人员需要不断对这一方面内容加以分析研究,在工作中找准探索与研究的关键点,使这部分技术能够伴随着现代科学技术的发展而不断进步,并对工业厂房的建设乃至整个经济社会的发展起到非常重要的作用。
参考文献:
[1]梁照云:《工业厂房地基基础施工技术与加固技术的研究》,《中小企业管理与科技》, 2010年
桩基础技术论文范文第4篇
【关键字】:桩基础施工技术
中图分类号:TU74文献标识码:
A
一、引言
桩基础是由桩和承台构成的深基础。由基桩和联接于桩顶的承台共同组成。若桩身全部埋于土中,承台底面与土体接触,则称为低承台桩基;
若桩身上部露出地面而承台底位于地面以上,则称为高承台桩基。建筑桩基通常为低承台桩基础。高层建筑中,桩基础应用广泛。
二、研究现状
随着我市市政建设工程规模的急速扩大,市政工程从地下往空间发展,房屋保护的要求也越来越高,大直径钻孔灌注桩因其具有较高的承载力、无挤土、无震动、能贴近建筑物施工,适应性强等优点,在市政工程中得到广泛应用。但是,由于桩基施工为隐蔽工程,地下地质情况千变万化,错综复杂,施工质量控制难度大,经常遇到意想不到的情况和突发事件,大直径灌注桩的质量事故时常发生,影响其功效的发挥。
三、研究目的和意义
钻孔灌注桩作为一种桩基础中的基础形式之一,其用途十分广泛,可以在各种基础施工中用到。同时它的特点也是显而易见的,比如:施工速度较快、施工占用面积较小,对于周围的其他施工影响较小等等。钻孔灌注桩的相关施工所涉及的内容很多,其中有测量方面的工作、还有机械相关操作方面的工作以及钢筋的加工、混凝土的搅拌等等多种工作。这些工作的种类相对较多,工作中的技术含量也较多,因此所受到的制约方面也很多。这样就会给施工过程带来一些问题。如果这些问题的出现必然会对整体施工的质量产生不利影响,如果不对这些问题进行关注的话,这些质量问题必然会使成桩难以满足设计要求,如果进行相关补救也存在一定的难度。所以在施工过程中,要加强施工准备、成孔等各环节的质量技术,确保钻孔灌注桩的成桩质量,同时桩基础质量直接关系到建筑结构及施工人员的安全性。
四、桩基础分类
1按承台高低分
a.高承台桩基础:指承台底与地面不接触(在冲刷线以上)的桩基。b.低承台桩基础:指承台底在地面以下,与地基土(冲刷线)接触的桩基。
2按桩身材料分a.木桩b.钢桩c.混凝土桩d.钢筋混凝土桩
3按作用机理分a.摩擦桩b.端承桩c.端承―摩擦桩d.摩擦―端承桩e.嵌岩桩
4按桩径大小分a.小桩:d≤250mm
b.中等直径桩:250mm
c.大直径桩:d≥800mm
5按施工方法分a.预制桩
b.灌注桩
五、桩基施工新技术
在明确了桩基础概念之后,我们向大家介绍几种成功应用的桩基础施工新技术。
(一)静力压桩
1.静力压桩的含义
用静力压桩机或锚杆将预制钢筋混凝土桩分节压入地基土中的一种沉桩施工工艺。静力压桩包括锚杆静压桩及其他各种非冲击力沉桩。
2.适用范围
静力压桩适用于软土、填土及一般粘性土层中应用,特别适合于居民稠密及危房附近环境要求严格的地区沉桩,但不宜用于地下有较多孤石、障碍物或有厚度大于2m的中密以上砂夹层的情况,以及单桩承载力超过1600kN的情况。
(二)泥浆护壁钻孔灌注桩
1.泥浆护壁钻孔灌注桩的含义
(1)灌注桩:先用机械或人工成孔,然后再下钢筋笼、灌注混凝土的基桩。
(2)泥浆护壁:用机械进行灌注桩成孔时,为防止塌孔,在孔内用相对密度大于1的泥浆进行护壁的一种成孔施工工艺。
2.适用范围
泥浆护壁钻孔灌注桩按成孔工艺和成孔机械的不同,可分为如下几种,其适用范围如下:
(1)冲击成孔灌注桩:适用于黄土、粘性土或粉质粘土和人工杂填土层中应用,特别适合于有孤石的砂砾石层、漂石层、坚硬土层、岩层中使用,对流砂层亦可克服,但对淤泥及淤泥质土,则应慎重使用。
(2)冲抓成孔灌注桩:适用于一般较松软粘土、粉质粘土、砂土、砂砾层以及软质岩层应用,孔深在20m内。
(3)回转钻成孔灌注桩:适用于地下水位较高的软、硬土层,如淤泥、粘性土、砂土、软质岩层。
(4)旋挖钻成孔灌注桩:适用于一般粘性土、砂土、砂砾层以及中等密实度的卵石地层应用,孔深在80m内。
(5)潜水钻成孔灌注桩:适用于地下水位较高的软、硬土层,如淤泥、淤泥质土、粘土、粉质粘土、砂土、砂夹卵石及风化页岩层中使用,不得用于漂石。
(三)人工成孔灌注桩
1.人工成孔灌注桩的含义
人工成孔灌注桩,又称人工挖孔灌注桩,即是采用人工挖土成孔、灌注混凝土成桩的一种基桩。
2.适用范围
人工成孔灌注桩适用于桩直径800mm以上,无地下水或地下水较少的粘土、粉质粘土,含少量的砂、砂卵石、姜结石的粘土层采用,特别适于黄土地层中使用,深度一般20m左右。可用于高层建筑、公用建筑、水工结构(如泵站、桥墩作支承、抗滑、挡土、锚拉桩之用。)对有流砂、地下水位较高、涌水量大的冲积地层及近代沉积的含水量高的淤泥、淤泥质土层不宜使用。
(四)螺旋钻成孔灌注桩
1.螺旋钻成孔灌注桩的含义
(1)干作业成孔灌注桩:是指不用泥浆或套管护壁的情况下用人工或钻机成孔,下钢筋笼、浇灌混凝土的基桩。
(2)螺旋钻成孔灌注桩:是干作业成孔灌注桩的一种,是利用电动机带动带有螺旋叶片的钻杆转动,使钻头螺旋叶片旋转削土,土块随螺旋叶片上升排出孔口,至设计深度后,进行孔底清理,然后下钢筋笼、浇灌混凝土成桩。
2.适用范围
螺旋钻成孔灌注桩适用于地下水位以上的一般粘性土、粉土、黄土,以及密实的粘性土、砂土层中使用。
六、结论
本文通过对当今普遍采用的钻孔灌注桩施工工艺的分析,参照大量施工经验总结的资料,认真总结得出的主要结论如下:在施工前的施工组织设计中应按地质情况以及设计要求去综合考虑,选择方案时,应以选择对桩基质量有利的方案为原则。钻孔灌注桩的这一技术的发明,实际上就是因为使用了泥浆,因此,可见泥浆在钻孔灌注桩中的重要性。结合工程实践,通过实验探讨泥浆的护壁性能,提出了合适的泥浆配合比。一旦出现桩基施工和质量事故,就应仔细分析其原因,找出正确的措施进行解决,要做到对症下药。对付事故的最好办法还是以预防为主,在施工之前,就应做足一切必要的防患措施,尽量做到少出事故
参考文献
1、《桩基工程手册》沈保汉
桩基础技术论文范文第5篇
关键词:复合地基施工技术 应用
Abstract: this Foundation treatment techniques through the analysis of various methods, presented the advantages of composite Foundation and the economic benefits brought about by, that is, guarantee quality of engineering subject, save the project required investment in, filling the shortcomings of China"s shortage of construction funds.
Key words: composite Foundation construction technology
中图分类号:TU71文献标识码:A
一.复合地基的定义及分类
(一)复合地基在基础工程中的地位复合地基理论和工程应用近年来发展很快,复合地基
技术在土木工程建设中得到广泛应用,复合地基已成为一类重要的地基基础型式。如何评价复合地基在基础工程中的地位,合理定位,既有利于进一步扩大复合地基应用,又有利于复合地基理论的发展。
(二)复合地基的基本类型
目前在我国应用的复合地基类型主要有:由多种施工方法形成的各类砂石桩复合地基,水泥土桩复合地基,低强度桩复合地基,土桩、灰土桩复合地基,钢筋混凝土桩复合地基,薄壁筒桩复合地基和加筋土地基等。复合地基技术的推广应用产生了良好的社会效益和经济效益。
复合地基是指天然地基在地基处理过程中部分土体得到增强,或被置换,或在天然地基中设置加筋材料,加固区是基体(天然地基土体或被改良的天然地基土体) 和增强体两部分组成的人工地基。
当天然地基不能满足建( 构) 筑物对地基的要求时,需要进行地基处理,形成人工地基,以保证建( 构) 筑物的安全与正常使用。按加固原理分类,地基处理方法主要有下述六大类:置换,排水固结,振密、挤密,灌人固化物,加筋,以及冷、热处理等。经过地基处理形成的人工地基大致上可分为三类:均质地基、多层地基和复合地基。复合地基是指天然地基在地基处理过程中部分土体得到增强,或被置换,或在天然地基中设置加筋材料,加固区是由基体( 天然地基土体或被改良的天然地基土体)和增强体两部分组成的人工地基。在荷载作用下,基体和增强体共同承担荷载的作用。通过分析复合地基与地基处理的相互关系,复合地基与浅基础和深基础的关系,复合地基与双层地基的区别,复合地基与复合桩基的关系,较深入地分析了复合地基在基础工程中的地位。
二.地基处理技术及分类
地基处理技术分类方法很多,按照加固地基的机理,常将地基处理技术分为六类:置换,排水固结,振密、挤密,灌人固化物,加筋和冷、热处理。可以将采用各类地基处理方法处理形成的人工地基分为两类:一类是天然地基土体的物理力学性质得到普遍的改良,类似于均质地基。这类人工地基的承载力和沉降计算方法基本上与原天然地基,或与浅基础的相同,不同的是地基土层的物理力学指标得到改善。另一类是在地基处理过程中部分土体得到增强,或被置换,或在天然地基中设置加筋材料,形成复合地基。例如:采用振冲置换法,强夯置换法,砂石桩置换法,石灰桩法,深层搅拌法,高压喷射注浆法,振冲密实法,挤密砂石桩法,土桩、灰土桩法,夯实水泥土桩法,孔内夯扩桩法,树根桩法,低强度桩复合地基法,钢筋混凝土桩复合地基法等,均可形成复合地基。
通过地基处理形成复合地基在地基处理形成的人工地基中占有很大的比例,而且呈发展趋势。浅基础的设计计算理论比较成熟,而复合地基设计计算理论正在发展之中。从上述分析可以看到重视复合地基理论研究的必要性和重要性。同时也应该看到,复合地基理论和实践的发展将进一步促进地基处理水平的提高。复合地基技术在地基处理技术中有着非常重要的地位。
三.复合地基与浅基础和桩基础
当天然地基能够满足建筑物对地基的要求时,通常采用浅基础;
当天然地基不能满足建筑物对地基的要求时,需要对天然地基进行处理形成人工地基以满足建筑物对地基的要求。桩基础是软弱地基最常用的一种人工地基形式。广义地讲,桩基技术也是一种地基处理技术,而且是一种最常用的地基处理技术。考虑桩基技术比较成熟,而且已形成一套比较全面、系统的理论,通常将桩基技术与地基处理技术并列,在讨论地基处理技术时一般不包括桩基技术。采用的地基处理方法不同,天然地基经过地基处理后形成的人工地基性态也不同。经过地基处理形成的人工地基多数可归属为两类:一类是在荷载作用范围下的天然地基土体的力学性质得到普遍的改良,如通过预压法、强夯法,以及换填法等形成的土质改良地基。这类人工地基承载力与沉降计算基本上与浅基础相同,因此可将其划归浅基础。另一类是在地基处理过程中部分土体得到增强,或被置换,或在天然地基中设置加筋材料,形成复合地基。例如水泥土复合地基、碎石桩复合地基、低强度混凝土桩复合地基等。根据上述分析,浅基础(shallow foundation)复合地基(composite founda-tion)和桩基础(pilefoundation)已成为工程建设中常用的三种地基基础型式。
在浅基础中,上部结构荷载是通过基础板直接传递给地基土体的。按照经典桩基理论,在端承桩桩基础中,上部结构荷载通过基础板传递给桩体,再依靠桩的端承力直接传递给桩端持力层。不仅基础板下地基土不传递荷载,而且桩侧土也基本上不传递荷载。在摩擦桩桩基础中,上部结构荷载通过基础板传递给桩体,再通过桩侧摩阻力和桩端端承力传递给地基土体,而以桩侧摩阻力为主。经典桩基理论不考虑基础板下地基土直接对荷载的传递作用。虽然客观上大多数情况下摩擦桩桩间土是直接参与共同承担荷载的,但在计算中是不予以考虑的。在复合地基中,上部结构荷载通过基础板直接同时将荷载传递给桩体和基础板下地基土体。对散体材料桩,由桩体承担的荷载通过桩体鼓胀传递给桩侧土体和通过桩体传递给深层土体。对粘结材料桩由桩体承担的荷载则通过桩侧摩阻力和桩端端承力传递给地基土体。
由上面分析可以看出,浅基础、桩基础和复合地基的分类主要是考虑了荷载传递路线。荷载传递路线也是上述三种地基基础型式的基本特征。简而言之,对浅基础,荷载直接传递给地基土体;
对桩基础,荷载通过桩体传递给地基土体;
对复合地基,荷载一部分通过桩体传递给地基土体,一部分直接传递给地基土体。通过上述对浅基础、复合地基和桩基础荷载传递路线的分析,可以认为复合地基是界于浅基础和桩基础之间的,如图! 所示。摩擦桩基础中考虑桩间土直接承担荷载的作用,也可属于复合地基。或者说考虑桩同作用也可将其归属于复合地基。
四.复合地基与双层地基
有的学者将复合地基视为双层地基,将双层地基有关计算方法应用到复合地基计算中。事实上,复合地基与双层地基在荷载作用下的性状有较大区别,在复合地基计算中直接应用双层地基计算方法是不妥当的,有时是偏不安全的,下面作简要分析。
图(1)、(2)分别为复合地基和双层地基的示意图。设复合地基加固区复合模量为E1,其他区域土体模量为E2,显然E1>E2。设双层地基上层土体模量为E1,下层上体模量E2。双层地基上层土厚度与复合地基加固区深度相同,记为H。以条形基础为例,地基上荷载作用面宽度均为B 而且荷载密度相同。现分析在荷载作用中心线下复合地基加固区下卧层中A点(见图1(a))和双层地基中对应的B点(见图1(b))竖向应力情况。不难看出复合地基A点竖向应力σA,比双层地基中B点竖向应力σB大。如果增大E1/E2值,则σA值增大,而σB值减小。理论上当E1/E2趋向∞时,双层地基中B点竖向应力σB趋向零,而复合地基A点竖向应力σA是不断增大的。由上述分析可以看出复合地基与双层地基在荷载作用下地基性状的差别是很大的。
当层法可用来计算荷载作用下双层地基中的附加应力,而将复合地基视为双层地基采用当层法计算复合地基中的附加应力可能带来很大误差。计算结果是偏不安全的,当层法不适用于复合地基中附加应力计算。
(a)复合地基;
(b)双层地基
图1 复合地基与双层地基
根据前面分析,在荷载作用下双层地基与复合地基中附加应力场分布及变化规律有着较大的差别,将复合地基认为双层地基,低估了深层土层中的附加应力值,在工程上是偏不安全的。
五.复合地基与复合桩基
在深厚软粘土地基上按桩基理论设计摩擦桩基础时,为了节省投资,管自立(!./. 年) 采用稀疏布置的摩擦桩基(桩距一般在0 1 2 倍桩径以上),并称为疏桩基础。疏桩基础比按桩基理论设计的常规摩擦桩基础,沉降量大,但考虑了桩间土对承载力的直接贡献,以较大的沉降换取工程投资的节约。事实上桩基础的功能主要有两方面:一方面可以提高承载力,另一方面可以减小沉降。以前人们往往侧重利用采用桩基解决地基承载力不足的问题,不重视采用桩基可以减小地基沉降的功能。将用于以减小沉降量为目的桩基础称为减少沉降量桩基。这里减小沉降量桩基一般是指摩擦桩基。减小沉降量桩基设计中考虑了桩同作用。在疏桩基础和减小沉降量两类桩基础中,均考虑了桩和同承担荷载。事实上,筏板基础下的摩擦桩基,桩间土一般直接承担一部分荷载,在经典桩基理论中只不过是主观上不考虑而已。以前主观上不予考虑的原因可能认为桩间土承担荷载比例小,不值得考虑,也可能是主动将其作为一种安全储备。还有一种可能是考虑到计算较困难,不确定因素较多而不予考虑,而且在工程上是偏安全的。近年来发展起来的桩同作用分析,主要也是考虑桩间土直接承担荷载。在疏桩基础、减小沉降量桩基和考虑桩同作用的思路中都是主动考虑摩擦桩基础中客观上存在的桩间土直接承担荷载的性状。考虑桩同直接承担荷载的桩基称为复合桩基。是否可以说复合桩基实质上是主动考虑桩间土直接承担荷载的摩擦桩基,而在经典桩基理论中,摩擦桩基中是不考虑桩间土直接承担荷载的。
前面已经谈过,复合地基的本质就是考虑桩间土和桩体共同直接承担荷载。由上面分析可知复合桩基的本质也是考虑桩同直接承担荷载。因此可以将复合桩基归为刚性桩复合地基范畴。复合桩基是一类刚性桩复合地基。在《复合地基》( 龚晓南,!..& 年) 中已谈到:刚性摩擦桩考虑桩同作用,可采用复合地基理论计算。目前,在学术界和工程界对复合桩基是属于复合地基还是属于桩基础是有争议的,笔者认为既可将复合桩基视作桩基
础,也可将其视为一种复合地基;
同时又认为复合桩基属于桩基还是属于复合地基并不十分重要,重要的是弄清复合桩基的本质,复合桩基的承载力和变形特性,复合桩基的形成条件,复合桩基理论与传统桩基理论的区别。
事实上也可以将复合桩基视为复合地基一种,或者说将其归属复合地基,有助于对复合桩基荷载传递规律的认识,也有益于复合桩基理论的发展。
随着多种复合地基技术的应用,复合地基质量检测近年来也得到发展。但相比较复合地基质量检测方面存在的问题和困难多一些,需要继续努力。作为复合地基整体质量检测,不仅是桩体质量检测,还应包括桩间土的测试,以及桩土复合体的性能测试。
结语