当前位置:晨阳文秘网>范文大全 > 优秀范文 >

2023水库工程论文【五篇】【完整版】

时间:2023-07-03 17:30:07 来源:晨阳文秘网

水库的渗漏问题关系到水库工程本身的质量,是我们在从事水利工程施工、管理和维护过程中需要特别关注的问题。水库渗漏如果没有得到及时的处理与修缮,一方面将会对水库本身的质量产生危害,从而缩短水库工程的使用寿下面是小编为大家整理的2023水库工程论文【五篇】【完整版】,供大家参考。

水库工程论文【五篇】

水库工程论文范文第1篇

【关键词】水库工程;
防渗漏;
塑性混凝土防渗墙技术;
化学补强技术

水库的渗漏问题关系到水库工程本身的质量,是我们在从事水利工程施工、管理和维护过程中需要特别关注的问题。水库渗漏如果没有得到及时的处理与修缮,一方面将会对水库本身的质量产生危害,从而缩短水库工程的使用寿命;
另一方面也将威胁到水库附件居民的生产、生活,进而将“惠民”的水库工程变成了“害民”的烫手山芋。本文在此对我国水库工程中的防渗漏进行了探讨,希望能够对改进我国水库工程的建筑和维护有所帮助。水库的渗漏原因繁多,处理渗漏的技术也比较复杂,概括的来说,当前国内主要使用以下几种手段来处理渗漏问题。

一、垂直防渗技术

垂直防渗常适用于地基透水层较薄或隔水层较浅的情况,以做成封闭式防渗帷幕来根治坝基渗透破坏的险情,可以比较彻底地解决坝基和坝身渗漏问题。

1.1塑性混凝土防渗墙技术。防渗墙的机理是:使用专用机具(乌卡斯钻机),在已建的坝体或覆盖层透水地基中建造槽型孔,以泥浆固壁,并利用高压泵将泥浆压入孔底,携带岩渣,再从孔底回流到地面,然后采用直升导管,向槽孔内浇筑混凝土,形成连续的混凝土墙,起到防渗目的。塑性混凝土是用黏土和膨润土取代普通混凝土中的大部分水泥形成的一种柔性工程材料。普通混凝土相比,塑性混凝土弹性模量低、极限应变大、能适应较大变形、抗渗性能好的特点。塑性混凝土防渗墙的一般施工步骤是:

(1)修建施工平台及导向槽;

(2)划分槽段。槽段的长度宜尽量加长,以减少槽段间接头数量,提高墙体的整体性。但受墙基地质条件限制及成槽深度等因素影响,槽段又不宜过长。根据工程特点,采用冲击钻与液压抓斗相结合的“两钻三抓”成槽方式,即用冲击式钻机钻槽孔两端的接头孔,槽段中间部分用“三抓”完成。

(3)混凝土浇筑。采用直升导法浇筑水下混凝土由混凝土输送泵往储料斗送料。

(4)泥浆固壁。塑性混凝土防渗墙施工过程中,固壁泥浆直接影响工程的施工进程和槽壁的稳定,并能起到冷却钻头、钻具、悬浮岩屑以及防止坍孔的作用。

(5)清孔换浆。抓斗在抓孔过程中,会有部分细砂或其他岩渣悬混在泥浆中,然后逐渐沉淀到底孔,抓斗在挖掘槽孔底部时也会遗留少部分细砂和岩渣,这些淤积物都必须在混凝土浇筑前清理干净否则,会给墙体质量带来危害。(6)墙体塑性混凝土浇筑。塑性混凝土的浇筑采用泥浆下直升导管法,导管采用直径为250mm的钢制导管,丝扣连接,导管安装用16t吊车或冲击钻辅助下设。

(7)槽段连接。墙段连接采用接头管法,即在一期槽孔浇筑前在槽孔两端下设钢管,待混凝土初凝后,按一定的速度将其拔起,形成混凝土接头孔。

1.2高压喷射灌浆防渗技术。高压喷射灌浆防渗技术的机理是:按设计布孔,利用钻机钻孔,将喷射管置于孔内(内含水管、水泥管和风管),由喷射出高压射流冲切破坏土体,同时随喷射流导入水泥浆液与被冲切土体搅拌,喷嘴上提,浆液凝固,在地基中按设计的方向、深度、厚度及结构形式与地基结合成紧密的凝结体,起到防渗作用。

二、水平防渗技术

水平铺盖分利用天然黏土和人工填筑黏土两种,可以就地取材、造价低、施工工作面大、工期短、简单易行,不需要特殊的施工设备和器材。按设计要求施工,可以满足渗透稳定,但渗透量较大,坝基下游仍有一定的坡降。因此在采用水平铺盖防渗时,必须结合下游排水减压设施。

三、使用化学补强技术处理水库渗漏

化学补强是在不改变原工程结构的前提下,利用原混凝土结构强度,对其薄弱环节产生的裂缝和破损部分,采用化学物质环氧材料进行局部修补的一种方法目的是恢复建筑物的整体性,保持混凝土的强度、耐久性和抗渗性。环氧材料具有较高的粘结强度,并具有一定的弹性能与新老混凝土很好地结合,是目前较理想的防渗堵漏新型材料,其组成成分主要有:

(1)主剂环氧树脂是有环氧基团的高分子聚合物,其结构是线型的,本身不会固化,但流动态随温度高低而发生变化加固化剂后,具有良好的粘结性;

(2)固化剂;

(3)增韧剂;

(4)稀释剂;

(5)填料等。

具体步骤:首先清除混凝土表面污渍,先沿裂缝沟槽,把漏水处用水玻璃掺水泥止住水,然后用环氧砂浆修补,接着填筑环氧砂浆,待填满后用木板压紧压平。

水库是水利产业的重要组成部分。水库是民心工程,改革开放以来,尤其是近年来随着经济的快速发展,国家对水库的各项投资逐渐加大,水库工程的数量、规模及建设质量都有了巨大的进步。但对水库的防渗漏问题我们仍然不能掉以轻心,必须在思想和行动上动作起来,切实提高水库的质量。

参考文献

[1]金丽华、周岚辉,《关于水库风险问题分析》,载《中国集体经济(下半月)》2007年6月

[2]王振方、周春海、周淑杰,《化学补强技术在水库工程维修中的应用》,载《水利科技与经济》2006年第7期

[3]李晓丽、荆亮,《水库土石坝渗漏控制措施分析》,载《科技咨询导报》2007年第21期

水库工程论文范文第2篇

1.1坝体结构设计

水库枢纽工程建筑物由混凝土面板堆石坝、岸边溢洪道、取水兼放空隧洞等组成。大坝为混凝土面板堆石坝,最大坝高86.0m,坝顶高程756.00m,坝顶长202.0m,坝顶宽7.5m,大坝上游坝坡1∶1.5065,下游平均坝坡1∶1.57(坝坡上设有6.5m宽的“之”字形上坝公路,公路之间坝坡1∶1.30),见图1。堰顶高程749.00m,溢流净宽35m,侧槽首端底宽6.0m,末端底宽12.0m;侧槽段后接泄洪无压隧洞,总长465m,其中调整段长40m、收缩段长50m;泄洪隧洞出口接消力池,长80m,采用底流消能;出水渠段长20.0m。

1.2筑坝材料设计

垫层区水平宽3.0m,其上游侧采用混凝土挤压机挤压成型C5混凝土墙,高0.4m。过渡层水平宽4.0m,铺筑层厚0.4m,最大粒径300mm。主堆石区采用弱风化砂岩堆石料,铺筑层厚0.8m,最大粒径800mm。下游堆石区采用堆石料主要为砂岩和泥岩,可以使用与主堆石区相同材料或采用较低的压实标准和质量相对较差的软岩料、风化石料(开挖石渣),铺筑层厚1.0m,最大粒径800mm。周边缝下游侧特殊垫层料,采用最大粒径<40mm,且内部稳定的反滤料,铺筑层厚0.2m。上游铺盖区采用粉煤灰填筑,下游坝面为干砌块石护面,护坡厚500mm,材料分区特性表见表1。

1.3大坝分缝和止水

混凝土面板采用C25混凝土,混凝土抗渗等级为W8,抗冻等级F100。根据面板的受力情况,两坝肩附近左右岸面板分别设5条和4条张性垂直缝,间距7.5~9.96m不等;其余河床段面板共设7条压性垂直缝,间距均为15.00m。垂直缝底部设一道W型铜止水,缝面涂刷沥青乳液,其中张性垂直缝缝顶部需采用GB弧凸状塑性填料,外加三元乙丙复合板并用不锈钢固定封闭保护。防浪墙与面板顶部水平接缝止水结构与周边缝相同,防浪墙伸缩缝分缝位置与面板垂直缝在同平面位置,中部设置铜止水一道。

1.4基础处理设计

1)坝基开挖:本工程最大坝高86.0m,趾板基础应开挖至坚硬、不冲蚀和可灌浆的基岩,将趾板、垫层和过渡层设于弱风化层上部,开挖面应力求平顺,避免陡坎和反坡。2)固结灌浆:在趾板基础开挖过程中,对趾板基础进行固结灌浆并对断层破碎带进行深挖回填,固结灌浆按两排、孔深5m、排距2.0m布置。固结灌浆工程量2220m。3)帷幕灌浆:根据地形地质条件及岩体的透水率确定帷幕边界,具体布置为帷幕线主要沿趾板轴线布置,平面上接弱透水岩体,原则接地下水位,垂向上以岩体透水率≤3Lu,帷幕长约444m,帷幕面积13600m2,总进尺4500m。

2优化设计方案

2.1工程方案优化

在前期设计方案的基础上,根据实际的勘探测量工作的结果,设计方案随着现场查明地质情况进行优化,以达到控制工程造价的目的[1]。1)大坝结构优化设计:垫层、过渡层材料料场由原初步设计灰岩料场(运输距离46km)改为弱风化砂岩料场(运输距离1km);主堆石料材料料场由原初步设计开采砂岩料场填筑改为部分利用开挖洞碴填筑;次堆石料材料料场由原初步设计开采砂岩料场填筑改为部分利用开明挖石碴填筑。2)坝基覆盖层开挖:优化设计坝基河床仅挖除趾板区及50m低压缩区范围的覆盖层,其余坝基覆盖层保留利用,减少开挖量0.34万m3、减少填筑量7.84万m3。优化后的大坝剖面图见图2。

2.2施工组织

2.2.1大坝工程大坝为混凝土面板堆石坝,最大坝高86.0m,坝顶高程756.00m,坝顶长202m,坝顶宽7.5m,顶部上游侧设置5.7m高的防浪墙,大坝上游坝坡1∶1.5065,下游坝坡平均为1∶1.57,混凝土面板厚0.3~0.6m,面板后设水平宽3.0m的垫层、4.0m的过渡层,过渡层后为主堆石区,下游为次堆石区,下游坝面为干砌块石护面。面板与河床和两岸基础相接处设趾板。大坝填筑的垫层和过渡料均采用灰岩料(运距约46km)、主、次堆石区均采用弱风化砂岩料[2]。2.2.2料场规划与开采铜灌口水库灌区工程大坝填筑石料场仍采用初步设计选择的石料场(Ⅰ号),料场位于坝址左岸下游,料场距坝址直线距离0.5~0.8km。料场为峡谷地形,单面斜坡,地形边坡较陡,另外坡体前缘右岸为进坝的唯一通道,料场开采及运输存在一定的施工干扰[3]。料场覆盖层为第四系覆盖层,植被生长较茂盛。经开挖揭露,覆盖层厚度1~5m,覆盖层以下为3m左右厚的强风化软岩层(无用层)。料场顶部与河床相对高差约200m,料场顶部可开采面积约为8800m2,顺河床方向开采长度约220m,顶部开采平台高程为800m,规划底部开采高程为650m,其开采高度150m。经初步测量,料场平均开采宽度为30m左右,料场顶部开采面积约为8800m2,可开采储量约132万m3,大坝回填总方量为140万m3左右,结合岩层产状,初拟开挖边坡坡比设为1∶0.3,每20m设一2m宽的马道[4]。

2.3优化效益

水库工程论文范文第3篇

输水洞为钢筋混凝土结构,断面尺寸1.0×1.6m,闸门结构为平板钢闸门,洞底进水口底板高程306.70m,最大设计流量12m3/s。溢洪道为实用堰,堰顶净宽10m,设四孔钢闸门。断面尺寸2.5×3.2m,闸门结构为平板钢闸门,堰顶高程311.80m,设计最大泄流量106m3/s。水库在防汛或突发事件,全体职工共同参加统一行动,统一听从调配。在灌溉和水费收缴工作中由领导带领分片管理,灌区由专人负责管理,统分相结合。

2水库各项规章制度建立健全落实情况

水库根据国家有关方针、政策、法规和上级部门有关于防汛工作决定,指示及规章制度对工程管理和防汛工作、财会管理分别制定落实了相关岗位责任制度,并层层落实到人。

3水库公益性岗位管理人员上岗情况、培训情况

小城水库属于中型水库。现有职工41人,退休9人,水管改革分离22人,公益性岗位定编19人。水管改革后公益性岗位持证上岗率100%,上岗人员对工作高度负责。人员培训按照省、市举办培训学习要求参加培训。

4水库工程运行管理、确权划界、安全鉴定情况

4.1水库1970年10月竣工投入运行,1971年12月在土坝桩号0+435m处发现坝后漏水,当时库水位为312.00m。1972年4月在该处坝下游坡高程306.7m处,出现塌坑,漏浑水,渗水量为0.00126m3/s。大坝出现险情。经处理后坝后仍漏水。迫使水库于1974年放空处理。这次处理将坝上游坡全部翻修,上游铺盖进行了修补,坝顶加宽至6.5m,并于1975年秋全部完成。1978年5月,水库再次出现险情,在土坝桩号0+435m处,库水位314.32m时,测得渗水量为0.00209m/s,渗水全部为浑水。险情再次出现。此次处理办法是在桩号0+400~0+560m段做坝后压渗盖处理。水库管理部门又于1980年至1982年对土坝桩号0+282m~0+617m段作了帷幕灌浆处理。虽经以上处理,坝后仍渗水。1988年6月,在土坝桩号0+345m处又出现三个塌坑。1991年4月,在坝桩号0+500m处出现新的渗水点。同时在坝桩号0+380~0+560m之间坝后还有多处渗水。1989年7月22日水库降特大暴雨,日雨量达167mm,超百年洪水,这场大雨入库洪水2966万立米,最大入流216.7m3/s,最大泄量120m3/s。这场洪水给工程造成了土坝0+230~254m坝后大面积滑坡,消力池边墙倒塌,及右坝头冲坑灾害。1990年工程恢复,并在桩号0+400~440m段坝后坡做压重补强,1991~1995年在0+440~0+617m坝后及坝脚做了1万立米砂卵石压重补强。1994年冬季在0+540~580m段坝后脚处从已压的砂砾石中冒气,冬季不冻,1995年春化后,0+540~617m段渗流加剧达到0.782升/秒并带土,致使坝后坡大面积下陷,经实测在0+565m段,断面最大下陷深度为29cm,坝下0+540m段由于漏水带沙1996年做了5000m3大面积压渗;
1997年处理0+320~0+440m段坝下天然泡塘漏水,完成砂砾石量6000m3,按设计仍有3000m3没完成,遵照吉水技(1998)120号吉林省水利厅关于舒兰市小城子水库除险加固工程初步设计批复精神,由舒兰市水利局组织施工队完成了土坝前坡305.0~310.24m,施工坝长477m,综合工程量66925m2的干砌护坡石翻修任务。1999年5月吉林省水利厅对水库除险加固设计进行批复,2001年5月开工,到今年止,坝体防渗墙工程;
坝后填筑及碎石护坡工程;
坝下游压重工程;
坝下游排渗、棱体及暗沟工程;
左右岸输水建筑工程;
至水库防汛路;
坝前干砌石护坡;
防浪墙;
溢洪道工程的消力池、扭曲面、陡坡段、海漫段等工程已完成。现加固未完工程有闸室未建、闸门及启闭设备还没有进行维修更换;
坝顶填筑;
机电设备;
绿化工程;
观测设备。金属结构设备;
房屋建筑等工程。

4.2水库土地已确权划界,确权土地面积7701亩。

4.32000年4月27日吉林省水利厅专家组对水库大坝进行安全鉴定。

5水库安全度汛工作落实情况

5.1建全联防组织,落实防汛抢险队伍,确定联系信号和群众安全转移地点。加强防汛值班值宿工作,建立建全岗位责任制,加强水文测报工作,严格按照调度命令,合理调水,及时准确向上级报水情,确保工程安全。检查通讯设备,确保通讯畅通无阻。检修好启闭设备,确保运用自如,同时做好必要的防汛物资准备。定314.75m为紧急水位,水位达到时按最大泄量泄流。联防人员上坝值班抢险,下游人民应做好转移工作(低洼村屯转移),水位到达315.20m时,下游全部转移,联防人员物资全部到库,出现险情立即抢修。遇百年一遇洪水,按日最大泄量泄流。洪水位超过315.30m时应在土坝0+00m处,人工开挖或爆破30m、最大挖深4.6m(底高程315.00m)的临时溢洪道溢洪。土方1285m3。

5.2对土坝进行密切的观测工作,加强管理,发现问题及时向上级领导汇报处理。

5.3备用电源不能使用,必要时可人工摇启闸门。

5.4主汛期发生标准内供水,严格按市防汛抗旱指挥部批复的控制运用调度计划执行。发生超标准供水,应采取抢救措施力争保坝安全并尽量减轻下游供水灾害和减少避免人员伤亡损失。

6水库工程运行管理机制情况

水库工程管理、灌区管护都是靠水库自身水费收入进行工程维修,由于资金有限,各种工程只能做维护使用。现水库除险加固工程没有完工;
水库灌区没有进行规模改造,工程正常运行十分吃力,不能达到当前各种防汛和灌溉要求。

7水库工程管理中存在的主要问题和解决对策

7.1右侧闸室边墙与整流段伸缩缝在库水位较高时绕渗漏水。应进行灌浆处理。

7.2闸门及启闭设备年久运行,需大修或更换。

7.3水库没有备用电源。备12马力柴油发电机一台。

7.4水库电话线路在雨天及大风天不能正常使用,即使能使用防汛专用拍报水情电话也不能使用。需更换线路。

8工作建议

水库工程论文范文第4篇

关键词:夹砂玻璃钢管;
性能;
应用推广

1工程概况

澄碧河水库位于百色市右江区北部7.0km的澄碧河上,是一座以发电为主,结合防洪,城市供水、旅游等综合利用的大(一)型多年调节水库,总库容11.5亿m3,建成于1961年。澄碧河水库水质经检测达到国家一类饮用水,是百色市城区生活用水的主要水源。1993年建成了水库向百色市供水一期工程,取得了良好的经济效益;
2004年又建成了二期供水工程。

澄碧河水库向百色市输水二期工程是由水库向市城东第三水厂输水,近期建设为DN800单管输水,建设规模为5×104m3/d;
远期建设规模为20×104m3/d,工作压力0.6Mpa。管路大部分通过地形地质条件复杂的山区或穿越隧洞,工程施工难度较大,因此部分管路使用了大口径夹砂玻璃管道(FRP)。这是百色市首次在输水工程中尝试应用了夹砂玻璃管道,积累了一定的经验。

2工程设计要点

2.1工程地质输水管沿线为三迭系和第四系地层。三迭系河口组(T2h)主要为绿色砂岩、粉砂岩、泥岩等,中~厚层状,风化后呈浅灰、黄色、棕黄色,出露条带宽度大于700m,分布在输水管道全线;
第四系坡积层(dlQ)为含碎石粘土,呈黄至棕黄色,稍湿,较坚硬,厚度1~3米,分布于管线大部分地段。第四系冲积层(alQ)为粉砂质粘土及砂土、砾质土,分布于一级阶地及河床、漫滩,分布于管线前段过河边部分。第四系人工填土(rQ)主要为含碎石粘土,取看破泥岩区的风化层及坡积层填筑,密度较大,分布于管线中段通过火柴厂、烤烟厂部分。工程地质条件复杂,给施工增加了难度。

2.2输水管线布置澄碧河水库向百色市输水二期工程输水管道从已铺设的一期输水管道1+830m桩号处引接,管路设计大部分沿324国道两侧3公里范围内的山脚布置。管路总长9.2Km,除有0.61Km通过农田外,其余均通过地形地质条件复杂的山区,其中穿越隧洞1151m。

输水管以预应力钢筋混凝土管为主,在连通管及跨度较大的架空管处采用钢管,在交通、运输不便的管段采用重量较轻的夹砂玻璃钢管。夹砂玻璃钢管共2370m,其中架空1336m,其余为地埋。

3夹砂玻璃钢管及其性能和优点

3.1夹砂玻璃钢管夹砂玻璃钢管是近年来国内外逐渐在石油化工、供排水等领域推广使用的一种新型柔性非金属复合材料压力管道,其实质是以玻璃纤维为增强材料,以不饱和热固性聚酯树脂为基体,中间夹石英砂的压力管(英文缩写名FRP,代号FWRPMP,简称夹砂管)。FRP管道目前执行国家建材行业标准《玻璃纤维缠绕增强热固性树脂夹砂压力管》。

3.2夹砂玻璃钢管的性能和优点①比强度高。玻璃纤维按一定的规律通过张拉缠绕形成一种多层网状分布,大大地提高了管道环轴向强度指标。②刚度大。管壁内、外层之间夹有0.3~0.8mm粒径的石英砂,经浸透树脂固化后提高了玻璃钢管的刚度。③抗渗防腐性能好。高分子化合物不饱和聚酯树脂填充于玻璃纤维网络空间并与玻璃纤维良好的浸润,固化后不但起到传递荷载和防渗漏的作用,而且起到防止酸、碱、盐侵蚀的同时,也保护输送的介质无二次污染。④耐久性好。夹砂玻璃钢管的使用寿命与使用环境温度以及扫用材料及管壁结构形式有关,按现行标准JC/T838-1998的规定,通常寿命为50年。⑤重量轻。夹砂玻璃钢的比重为15~20g/cm3,约是钢材的1/4。该工程使用内径800mm,管壁厚12~14mm,单管长12m,重约0.8T的夹砂玻璃钢管,非常适应山区非机械施工。⑥流通能力强。夹砂玻璃钢管内壁表面糙率系数在0.008~0.009之间,管内不易被微生物玷污蛀附及结垢,压力损失小,管道具有较高的流通能力。

此外,FRP管采用承插连接方式,双“O”型食品级橡胶圈密封,每完成一个接头立即充气检查其严密性;
另外,管道内衬为食品级树脂,所以此类管还具有综合造价低,安装方便、运行可靠、无毒无害等优点。

4玻璃钢管施工

4.1施工方法玻璃钢管施工实行《给水排水管道工程施工及验收规范》(GB50268—97)标准。采用手推车运至沟槽,手拉葫芦完成安装、连接,具体方法和步骤如下:①检查沟槽,基础不允许有沉降,保证无块石管道直接接触。②检查管道是否有运输、吊装过程的损伤,橡胶圈是否受损。③用小车或人工将管道移至沟槽内,橡胶圈涂上食用油,套于插口,保证其在槽内不扭曲,承、接口干净。④两端管道调直,偏角小于2°,均匀插入至规定尺度。⑤用试压机对双胶圈之间进行充气试压,检查严密性,合格后用铜螺栓封堵。⑥使用无块石的粘土对安装好的管道周围15cm范围进行夯填,然后机械取土掩埋。

4.2施工质量管理①经监理人员现场取样试验,检测结果为:在5%挠度下管刚度5002Pa,A、B级挠度水平均合格;
管壁材料环向拦伸强度为1858Kn/m;
巴氏硬度外壁53,内壁57。试验结果表明所用玻璃钢管材料强度符合现行国家标准JC/T838-1998,管材质量合格。②管道注水试压:管道完成安装、除接头外的管道回填后,分段进行注水法管道严密性试验,试验压力为设计工作压力的1.5倍。经试验管道严密性符合标准,施工质量合格。

5应用效果

5.1管道安装简便、成本低。管路2+567~3+609m的桩号段为穿越原作他用途的DN3000的旧隧洞,由于隧洞横断面积过小,吊装机械无法进入;
而5+420~5+624m桩号段及6+375~7+349m桩号段为地形地貌变化较复杂山沟及基本保护水田,用机械吊装则施工道路、措施等临时工程费用较高。采用夹砂玻璃钢管后,由人工通过双胶轮车运入、就位,手拉葫芦完成安装、连接。

5.2管件制安准确快速。该工程管路经过地形多变的山区,沿线有十多个直供用户,管件较多,共33个,使用玻璃钢管件后根据实际尺寸现场加工制作,尺寸精确,速度快,每组一天完成一个弯头的制作安装。

5.3管道严密性可靠。由于使用了双胶圈,每安装完成一个承插接头,现场立即通过双胶圈的气孔充气检查接头严密性,从而很大程度上保证整条管道严密性的满足,为及时回填创造了条件;
该工程投产至今夹砂玻璃钢管运行正常。超级秘书网

5.4项目投资省。由于夹砂玻璃钢管管壁薄,管槽开挖宽度比砼管小10cm,本工程管槽开挖深2.0m,由此减少工程量为200m3/km,单管长且重量轻,减少场内运输费及管道安装费和临时工程费,项目节省投资。

5.5减少了维修费用。12m长的玻璃钢采用密封承插连接,节点减少,不易渗漏。

6结语

夹砂玻璃钢管道相对于传统的管道来说,具有独特的耐腐蚀性,比强度高,寿命长、重量轻,安装容易,无毒害、防渗漏,不污染水质和不结垢,内表面光滑等优点,在同管径下,加大了水的流量,不会产生阻碍物;
输水水头沿程损失减少,同时输水加压消耗动力也减少,而且玻璃钢管道使用寿命长,正常使用条件下能安全运行50年。玻璃钢管在澄碧河水库输水二期工程的成功应用,不仅表明了其产品的性能可靠、质量稳定,而且取得了良好的社会、经济效益,有着广阔的发展前景。

参考文献:

水库工程论文范文第5篇

关键词:跨流域水库群;
联合供水调度;
调出区水库可调限制库容;
调入区水库需调水动态限制库容;
大系统分析协调原理;
遗传算法

中图分类号:TV697.12 文献标识码:A 文章编号:

日照市水资源与生产力要素的空间分布不协调问题越来越突出:西北部沭河流域莒县水资源丰富、开发条件好而利用率相对不高,东南部傅疃河流域市区企业密集,经济发达,城市供水能力却严重不足。这构成了市域范围内跨流域调水、丰歉互济的自然条件,为此日照市提出了沭水东调工程。该工程涉及调出区及调入区4个水库,由于不同流域来水的丰枯过程和各水库调节性能均有不同,因此本文拟对沭水东调工程相关的水库群联合供水优化进行研究,以确定供给日照市区的最大城市供水能力,增加有效供水量。

[BT2][STHZ]1 沭水东调工程概况

日照市沭水东调工程是连通境内沭河、傅疃河两大水系的水资源优化配置工程,工程线路全长8802 km。工程基本任务是将沭河流域青峰岭水库、小仕阳水库、峤山水库和沭河河道雨洪资源通过工程措施调至傅疃河流域的日照水库,经日照水库调蓄后向日照市区供水。本工程所涉及水库群构成方式示意图见图1,由该图可看出该水库群为混联式水库群,水力关系十分复杂。

3.1 沭河流域

3.2 傅疃河流域

3.3 供水源调度次序

4 跨流域水库群联合供水优化调算方法

水库群联合供水调算总思路是:确定调出区流域青峰岭、小仕阳、峤山水库的生态供水限制库容、农灌限制库容、可调限制库容,以及日照水库的城市供水限制库容、生态供水限制库容、农灌限制库容、需调水限制库容以后,采用长系列变动时历法进行调算,最终确定供给日照市区的最大供水能力。

4.1 调出区水库可调限制库容的确定

4.3 跨流域水库群联合供水调算算法

采用将遗传算法嵌套于长系列变动时历法中的算法进行联合供水调算步骤如下。

(1)输入初值:各水库的来水量、用户需水量、沭水东调工程的最大日供水量以及各限制库容初值,包括日照水库需调水、生态补水、[HJ1.84mm]城市供水、农灌供水限制库容;
青峰岭水库可调限制库容、生态补水、农灌供水限制库容;
小仕阳水库可调限制库容、生态补水、农灌供水限制库容;
峤山水库可调限制库容、生态补水、农灌供水限制库容。

(2)[JP2]计算日照水库可调蓄的调水量X5,青峰岭、小仕阳、峤山水库坝下的可调出水量,以及区间雨洪水可调出的水量。[JP]

5.2 结果分析

6 结论

(1)沭水东调工程是解决日照市水资源空间分布不均匀问题的重要工程措施,同时对调出流域及调入区流域水库群进行联合供水调度,可充分挖掘利用沭河流域的丰富雨洪水资源,增加傅疃河流域的可供水量。

(2)通过对沭河流域水库设定可调限制库容,傅疃河流域水库设定需调水动态限制库容,即可充分保障沭河流域各用水户的用水需求,又可避免沭河水资源被调入日照水库后弃掉,不会造成水资源浪费。

(3)青峰岭水库、小仕阳水库、峤山水库及日照水库4座水库联合供水较青峰岭、小仕阳及峤山水库单独供水可增加利用沭河水量939万m3。这表明水库群联合调度较单库调度更能进一步挖掘沭河流域各水库的供水潜力,对解决日照市区供水缺口十分有利。

经论证分析,沭水东调供水源中利用雨洪水资源量比例为69%,利用水库富余兴利水量比例为31%。

值得说明的是,跨流域调水工程调度系统是一个复杂的系统工程,本文主要针对规划设计阶段中跨流域库群联合供水调度有关问题进行系统研究,下一步需重点研究实时调度阶段考虑降雨预报信息的跨流域水库群联合调度及其风险分析问题。

参考文献(References):

[1] 冯尚友.水资源持续利用与管理导论[M].北京:科学出版社,2000.(FENG Shangyou.Water Resources Management[M].Beijing:Science Press,2000.(in Chinese)).

[2] 杨侃,刘云波.基于多目标分析的库群系统分解协调宏观决策方法研究[J].水科学进展,2001,12(2):232236.(YANG Kan,LIU Yunbo.System DecompositionCoordination MacroDecision Method for Reservoirs Based on MultiObjective Analysis[J].Advances in Water Science,2001,12(2):232236.(in Chinese))

[3] 周芬.台州市跨流域调水工程联合供水调度研究[J].浙江水利水电专科学校院报,2008,20(2):4448.(ZHOU Fen.Joint Water Supply Dispatching of Interbasin Diversion Project in Taizhou[J].Journal of Zhejiang Water Conservation & Hydraulics College,2008,20(2):4448.(in Chinese)).

[4] 唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社,2004.(TANG Huanwen,QIN Xuezhi.Practical Methods of Optimization[M].Dalian:Dalian University of Technology Press,2004.(in Chinese)).

[5] 王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社,2002.(WANG Xiaoping,CAO Liming.Theory,Application and Software of Genetic Algorithm[M].Xi′an:Xi′an Jiaotong University Press,2002.(in Chinese)).

[6] 刘卫林,董增川,王德智.混合智能算法及其在供水水库群优化调度中的应用[J].水利学报,2007,38,(12):14371443.(LIU Weilin,DONG Zengchuan,WANG Dezhi.Hybrid Intelligent Algorithm and its Application in Dispatch Optimization for Water Supply Reservoir Group[J].Journal of Hydraulic Engineering,2007,38(12):14371443.(in Chinese))

[7] 戴力,钟平安,万新宇,等.流域防洪体系联合调度整体模拟系统开发及应用[J].水电能源科学,2012,30(7):5457.(DAI Li,ZHONG Pingan,WAN Xinyu,et al.Developing and Application of Simulation System of Joint Operation of River Basin Flood Control System[J].Water Resources and Power,2012,30(7):5457.(in Chinese))

[8] Maja Schluter,Andre G.Savitsky,Daene C.McKinney,Helmut Lieth.Optimizing Longterm Water Allocation in the Amudarya River Delta:A Water Management Model for Ecological Impact Assessment[J].Environmental Modelling & Software,2005,(20):529545.

[9] 冯尚友.水资源持续利用与管理导论[M].北京:科学出版社,2000.(FENG Shangyou.Water Resources Management[M].Beijing:Science Press,2000.(in Chinese)).

[10] Singh V P.The use of Entropy in Hydrology and Water Resources[J].Hydrological Processes,1997,(11):587626.

[11] 陈守煜.工程模糊集理论与应用[M].北京:国防工业出版社,1998.(CHEN Shouyu.Fuzzy Sets Theory and Application[M].Beijing:National Defence Industry Press,1998.(in Chinese))

[12] 游进军,王忠静,甘泓,等.国内跨流域调水配置方法研究现状与展望[J].南水北调与水利科技,2008,6(3):14.(YOU Jinjun,WANG Zhongjing,GAN Hong,et al.Current Status and Prospect of Study in China on Water Allocation of InterBasin Diversion Projects[J].SouthtoNorth Water Transfers and Water Science & Technology,2008,6(3):14.(in Chinese))