当前位置:晨阳文秘网>教案设计 >

2023桥梁设计论文【五篇】(全文)

时间:2023-07-04 13:15:05 来源:晨阳文秘网

大跨度桥梁结构的非线性可分为材料非线性(又可称为物理非线性或弹塑性)和几何非线性两种,一般情况下结构的几何非线性可通过考虑所谓的P-效应来进行在结构非线性地震反应分析的计算理论研究方面,备受关注的是结下面是小编为大家整理的2023桥梁设计论文【五篇】(全文),供大家参考。

桥梁设计论文【五篇】

桥梁设计论文范文第1篇

大跨度桥梁结构的非线性可分为材料非线性(又可称为物理非线性或弹塑性)和几何非线性两种,一般情况下结构的几何非线性可通过考虑所谓的P-效应来进行在结构非线性地震反应分析的计算理论研究方面,备受关注的是结构的弹塑性分析,这不仅是因为相对于几何非线性而言,结构的弹塑性性能对于结构的抗震性能影响较大,而且更由于问题的复杂性。所以国内外众多学者针对后者开展了大量的研究工作。在大跨度公路桥梁弹塑性地震反应分析的力学模型中,根据各种构件的工作状态,将结构简化为杆系结构是合理的,同时对计算而言也是非常经济的。若按构件所处的空间位置可把力学模型分为平面模型和空间模型两种。若按模型中所采用的单元应力水平的种类来分,又可分为微观模型(采用应力空间)和宏观模型(采用内力空间)两种。由于微观模型要求将结构划分为足够小的单元,尽管很有效但所需的计算量较大,只适用较小规模的结构或构件的非线性分析,因此在实际工作中应用的范围比较有限,所以这里仅按前一种分类方法来加以讨论。

在结构弹塑性地震反应分析中,构件恢复力模型的确定是基本的步骤而构件的恢复力关系又集中反映在滞回特性曲线上,基本指标有曲线形状、骨架曲线及其特征参数、强度、刚度及其退化规律、滞回耗能机制、延性和等效滞回阻尼系数等。国内外在这方面已进行了大量的试验研究并取得了相应的研究成果。在平面模型中,根据所采用的塑性铰类型可把它分为集中塑性铰模型和分布塑性铰模型两大类。在集中塑性铰模型中,有代表性的一种是Clough等于1965年提出的双分量单元模型,该单元模型采用两根平行杆来模拟构件,其中一根用来表示具有屈服特性的弹塑性杆,另一根用来表示完全弹性杆,非弹性变形集中于杆件两端的集中塑性铰处,该模型的最大不足是不能考虑构件刚度退化。另一种有代表性的是1969年Giber-son提出的单分量模型,它克服了Clough双分量模型的不足,同时只用两个杆端塑性转角来刻划杆件的弹塑性性能,而杆件两端的弹塑性参数又是相互独立的,因此应用起来较为简便。其缺点是基本假设中有地震过程中反弯点不能移动的限制,所以对一些与基本假设不甚相符的特殊情况其使用的合理性就受到了限制。

二、多点激振效应

通常桥梁结构的地震反应分析是假定所有桥墩墩底的地震运动是一致的。而实际上,由于地震机制、地震渡的传播特征、地形地质构造的不同,使得入射地震在空间和时间上均是变化的。即使其他条件完全相同,由于地面上的各点到震源的距离不同,它们接收到的地震波必然存在着时间差(相位差),由此导致地表的非同步振动。这一点已被地震观测结果所证实。因此,多点地震输入是更合理的地震输入模式。特别是大跨度桥梁结构,当地震波的波长小于相邻桥墩的跨度时,入射到各墩的地震波的相位是不同的,由于在桥长范围内各墩下的基础类型和周围的场地条件可能有很大的差别,因此入射到各墩的地震波的波形也可能是不同的。有关实际震害表明,入射地震波的相位差可增大桥跨落梁的危险性。所以就地震波传播过程中的多点激振效应进行研究是有很大的实际意义的。

从概念上看,仅考虑入射地震波的相位变化情况属于行波效应分析问题。若再考虑地震波的波形变化就属于地震波的多点输入问题。从计算方法上看,由于多点地震输入算法与同步激振的计算方法不同,因此必须重新推导结构体系的动力平衡方程。美国学者Penzien和Clough于1975年推导了多自由度体系考虑地震波多点输入时的动力平衡微分方程及求解方法,通过所谓的影响矩阵,实现了地震波的多点输入算法。这种方法后来被广泛应用,目前所有考虑地震波多点输入的结构地震反应时程分析算法均以此为基本出发点。

综上所述,大跨度公路桥梁的多点激振效应分析是一个比较复杂的计算问题,其复杂性一方面在于计算方法上面,更重要的是对于不同类型的桥梁结构体系可能有着截然不同的计算结果。因此实际计算时只能针对具体的桥梁结构进行具体的分析,不能一概而论。从计算方法上看,目前有关研究基本上仍局限于线弹性体系的多点激振效应分析,而非线性多点激振效应与结构体系非线性地震反应分析的力学模型是密切相关的.

三、结构设计

上部构造形式的选择,应结合桥梁具体情况,综合考虑其受力特点、施工技术难度和经济性。简支空心板结构的桥型,施工方便,施工技术成熟;
但跨径小,梁高大;
由于桥梁跨径受限制,往往造成跨深沟桥梁高跨比不协调,美观性差;
上部构造难以与路线小半径、大超高线形符合,且高墩数量增加;
桥面伸缩缝多,行驶条件差。因而,在山区大跨度中,该类桥型一般用于地形相对平缓、填土不高的中、小桥上。预制拼装多梁式T梁在中等跨径桥中具有造价省、施工方便的特点,其造价低于整体式箱梁,是中等跨径直梁桥的常用桥型。但对于曲线梁来说,T梁为开口断面,抗扭及梁体平衡受力能力均较箱梁差,曲梁的弯矩作用对下部产生的不平衡力大。但当曲线桥的弯曲程度较小时,曲线T梁桥采用直梁设计,以翼缘板宽度调整平面线形,可减少曲梁的弯扭作用,在一定程度上可弥补曲线T梁桥受力和施工上的不足。虽然直线设置的曲线桥仍有部分恒载及活载不平衡影响及曲线变位存在,但较曲线梁小。此外,可以采取加强横向联系的措施,提高结构的整体性。对于大跨径桥梁,最好采用悬臂浇筑箱梁。但是对于中等跨径的桥梁,箱梁桥不论采取何种施工方式,费用都较高,与预制拼装多梁式T梁相比,处于弱势。

下部结构应能满足上部结构对支撑力的要求,同时在外形上要做到与上部结构相互协调、布置均匀。桥墩视上部构造形式及桥墩高度采用柱式墩、空心薄壁墩或双薄壁墩等多种形式。柱式墩是目前公路桥梁中广泛采用的桥墩形式,其自重轻,结构稳定性好,施工方便、快捷,外观轻颖美观。对于连续刚构桥,要注意把握上下部结构的刚度比,减小下部结构的刚度比,减小下部结构的刚度,可减小刚结点处的负弯矩,同时减小桥墩的弯矩,也可减小温度变化所产生的内力。但是桥墩也不可以太柔,否则会使结构产生过大变形,影响正常使用,并不利于结构的整体稳定性。对于高墩,除了要进行承载能力与正常使用极限状态验算外,还要着重进行稳定分析。对于连续梁结构或连续刚构桥,各墩的稳定性受相邻桥墩的制约影响,应取全桥或至少一梁作为分析对象。稳定分析的中心问题就是确定构件在各种可能的荷载作用和边界条件约束下的临界荷载,下面以连续梁为例进行说明。介于梁、墩之间的板式橡胶支座,梁体上的水平力H(车辆制动力和温度影响力等)是通过支座与梁、墩接触面上摩阻力而传递给桥墩的,它不但使墩顶产生水平位移,而且板式橡胶支座也要产生剪切变形。当梁体完成水平力的传递以后,梁体暂时处于一种固定状态,但由于轴力及墩身自重的影响,墩顶还会继续产生附加变形,这就使得板式支座由原来传递水平力的功能转变为抵抗墩顶继续变形的功能,支座原来的剪切变形先恢复到零,逐渐达到反向的状态。

四、结语

山区大跨度作为公路工程的一部分,很多方面需要探讨。山区大跨度方案的确定应遵循“安全、舒适、经济、美观”的原则,只有把握好规律,抓住侧重点,山区高速桥梁的布置和设计才能准确无误。

参考文献

[1]李伟,朱慈勉,胡晓依.考虑P-Δ效应压杆几何非线性问题的解析法[J].同济大学学报(自然科学版),2006,(10).

[2]阎兴华,苏志宏,朱清峰.钢—混凝土混合结构弹塑性动力分析综述[J].北京建筑工程学院学报,2006,(9).

[3]肖汝诚,郭文复.结构关心截面内力、位移混合调整计算的影响矩阵法[J].计算力学学报,1992,(1).

[4]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].西南交通大学,2003

桥梁设计论文范文第2篇

关键词:预应力混凝土弯箱梁斜腹板设计

一、概述

运平至三门峡高速公路是国道主干线209(二连浩特至河口)公路山西境内的一部分,是山西省"大"字型公路主骨架的重要组成部分,是晋煤外运主要通道之一。

老龙沟二号桥位于209国道运城至平陆段内的山岭重丘区,跨越老龙沟,为双幅分离式高速公路大桥,桥梁全宽20.5m。两幅桥之间的分离带为50cm。设计行车速度为60km/h。桥梁中心桩号为K17+930,起点中心桩号为K17+825,终点桩号为K18+035。该桥位于平曲线为圆曲线内,路线中心线半径为25lm,左幅桥中心线半径为256.25m,右幅桥中心线半径为245.75m。桥梁纵断面部分位于半径为R=13000m的竖曲线内。竖曲线两边纵坡分别为3.8%和3%,竖曲线半径为R=13000m,T=117m,E=0.526m。横桥向设有5%的超高。桥梁结构体系为单箱单室等截面预应力混凝土连续弯梁桥。

二、技术及工程用材(表1)

设计荷载:汽车-超20级挂车-120。

地震基本烈度:Ⅶ度。

温度:极端最高温度43℃,最低温度-13.2℃,常年平均温度14.6℃。

支座沉降:0.015m。

三、桥址区自然概况

1.地形、地貌

老龙沟二号桥位于山岭重丘区,跨越老龙沟,沟谷呈"V"字型,地形起伏很大,山岭陡峭,沟谷幽深,属中条山脉西南段的低山重丘区,地层上部为坡积物,下伏为太古界二长花岗片麻岩,高差达80m。

2.气象

桥址区属温带大陆性季风气候,一年四季分明,夏季干热多雨,冬季寒冷干燥,春秋季风较温和。年平均气温14.6℃,最冷一月平均气温-1℃,极端最低气温-13.2℃,最热平均气温27.6℃,极端最高气温43℃。最大冻深33cm,最大积雪厚14cm,平均风速3.5m/s,最大风速18m/s,主导风向为东风。

3.水文

桥梁跨越老龙沟为V字型沟,两边基岩,灌木荆棘丛生,沟壁陡峭,沟底平常只有一股细流流淌,水量受季节控制,雨季洪水时,流量增大,最深水位达1~1.5m,枯水期流量减少,水位只有1.5~0.8m左右。洪水主要由两边区域的山坡降雨汇流而成。

4.工程地质

桥址区分布的主要是太古界涑水群的变粒岩和后期燕山期泥合花岗岩以及由于热液变质作用形成的花岗片麻岩。其中夹有多层片麻岩。该区处于构造发育区,且中条山前大断裂至今仍在活动。使得岩石风化变质严重、节理、裂隙发育,岩石破碎。

四、主要材料

1.混凝土

上部结构主桥箱梁采用50号混凝土;
防撞护栏采用30号混凝土。

下部结构桥墩采用40号混凝土;
基础采用25号混凝土;
桥头搭板、桥台耳墙、背墙均采用25号混凝土。

2.钢材

钢筋:直径≥12mm者,均采用Ⅱ级(20MnSi)热扎螺纹钢筋;
直径<12mm者,采用Ⅰ级(A3)光圆钢筋。

钢板:应符合GB700-65规定的A3钢材。

3.其他

锚具及管道成孔:主桥箱梁锚具采用OVM15-12型,OVM15-12型连接器及其配套的相关配件,管道成孔采用内径为90mm的钢波纹管。

支座均采用KPZ系列抗震型盆式橡胶支座。

伸缩缝采用J-75D80B型伸缩装置。

桥面铺装采用沥青混凝土桥面铺装。

五、设计要点

由于老龙沟二号桥位于高山峻岭之中,受地形条件限制因素较多,在不得已的情况下,桥梁位于平曲线内,且半径较小,预制结构很难适应小半径线形的变化,因此该桥系用现浇施工方案,以保证线形的顺畅。

该桥的设计有如下几个特点:其一是预应力混凝土弯箱梁在设计难度较大的情况下,设置了斜腹板,导致了预应力钢束空间线形布设的难度更加繁复化。其二是该桥的桥面超高达5%,导致了内外腹板高差较大,增加了箱梁自身的扭矩。其三是该桥纵断面位于3%的纵坡内,使桥梁的构造处理进一步复杂化。其四是该桥跨越深谷,桥墩高度达66m,为了保证桥墩形状线条简洁,其外形尺寸保守一致,内侧腹板由上向下逐渐加厚。对以上诸条不利因素,在本次施工图设计中都得到了很好的解决。

1.上部构造

上部构造采用梁高为2m(以箱中心为准)的等截面斜腹板单箱单室预应力混凝土连续梁。桥梁横坡由两腹板调节而成。内侧(圆心侧)腹板高度为147.5cm,外侧腹板高度为172.5cm。单幅桥箱梁顶板宽度为10m,底板宽度为4.0m。悬臂板长度为2.5m。箱梁在跨中断面其顶、底板厚度分别为25cm和20cm。腹板宽度为40cm。lm过渡段之后,其腹加厚至60cm,余均不变。再过渡到底板厚50cm。边跨梁端顶、底板厚度分别为50cm及80cm。为了便于施工,在悬臂板与腹板的交接处设R=10cm的圆弧,以利于脱模。为增加桥梁的美观性,箱梁断面采用斜腹的形式。

为了满足锚具布置的需要,箱梁内侧在端部附近加厚,腹板内预应力钢束除竖向弯曲外,在主梁加厚段尚有平弯,与此相应,锚固面应相应倾斜,使预应力钢束张拉时垂直于锚固端面。

因本桥位于路线中心线半径R=25lm的平曲线上,内、外幅半径不同。为抵消弯箱梁因扭矩产生的不平衡支反力,本桥在桥台处向路线左侧设置了15cm支座预偏心。在桥墩处设置了6.5cm支座预偏心。

由于预应力引起的径向力(崩出力)的作用,腹板箍筋予以加强,从而起到增添防崩箍筋的作用,为方便施工,可不专门设置防崩筋。

2.下部构造

用于承受上部荷载的主墩采用4m*3.5m的空心薄壁墩,由于桥位跨越的老龙沟地势陡峭,落差较大,最高的桥墩达68.0m,为减少墩顶产生过大位移,满足规范要求,将薄壁墩的外形上做成等截面,内侧壁厚由上部的0.5m至下逐渐加厚到下部的lm。墩底设3m的实心段,从而达到加强桥墩整体刚度的目的。

根据地质资料显示,桥位处沟谷两侧的基岩强度存较大差异,且存在一条死断层,运城岸基岩风化严重,且较软弱,所以,桥墩基础在运城岸采用钻孔灌注桩,双排桩桩径为150cm,承台厚200cm。三门峡岸基础采用钢筋混凝土扩大基础,分为三层,每层厚度1.5m,最下层平面尺寸为10m*9.7m的矩形,襟边宽度横桥向取为1m,顺桥向取为1.2m。

运城岸桥台采用扶壁式,基础采用直径为φ120cm钻孔灌注桩,梅花形布置。三门峡岸桥台采用重力式U型台,两侧台高分别为5.00m和2.99m。U型台肋厚为0.5~2.34m。基础横桥向长设为21.30m。

3.结构分析

上部结构静力分析,采用有限元专用程序进行计算。计算荷载考虑了恒载、活载、预应力、混凝土收缩徐变、支座强迫位移、地震力及温度变化等。施工阶段计算共分七个阶段,用三孔万能杆件支撑梁搭设施工平台进行梁体浇筑施工,全桥支撑梁用三孔进行周转。由于该桥桥墩较高,为了保证结构物的可靠性,在静力分析的同时,还采用空间有限元通用程序,

对结构、动力静力特性进行了分析。

箱梁横向桥面板计算分别按框架和简支板考虑固端影响两种方法进行分析,择其大者进行截面配筋设计。

六、施工要点

1.上部施工

(1)由于本桥为跨越老龙沟险要地形及施工采用在墩顶架设施工平台支架的施工方法,支架架设前应对支架平台进行认真设计及试验,以保证支架平台的支承力及弹性、非弹性变形控制在允许范围内。每孔支架平台应在全跨内架设,全桥共设有三孔支架进行周转。

(2)主桥上部箱梁施工。采用在支架平台上逐孔现浇施工的方法,施工程序如下:

a.完成第一、二跨支架平台搭设及预压后,安装第一孔箱梁梁段模板及钢筋至第二孔的0.2L处(第一个施工缝),然后浇筑混凝土。浇筑时,应保证钢束连接器处混凝上端面与钢束中心线垂直,待箱梁混凝土达到85%的设计标号后,方可按设计图所示,对称张拉相应钢束并接长钢束,接长钢束应通至第三施工缝处。而在第一施工缝处不张拉的预应力钢束的长度应从梁端留至第二施工缝处。

b.安装第三孔箱梁梁段模板及钢筋至第三孔的0.2L处(第二个施工缝)浇筑工序及要求同前。然后浇筑箱梁混凝土,接长钢束的长度应通至第四施工缝处,而在施工缝处不张拉的预应力钢束的长度应留至第三施工缝处。

c.重复以上两步骤直至第五跨,待第五跨箱梁混凝土强度达到85%的设计标号后,方可在梁端对称张拉所有钢束。

预应力张拉以张拉吨位和伸长量双控,以伸长量为主,若伸长量低于-5%和超过+10%时,应停止张拉,分析检查出原因并处理完后方可继续张拉。

2.下部施工

下部构造墩身施工,由于本桥跨越深沟,墩身高度大,所以采用矩形薄壁空心墩。施工时利于滑摸爬升施工法,并严格控制墩身中心线的垂直性。在施工到墩顶部位时,注意预埋支架平台所需的承重构件。

上、下部构造施工时,应注意为下道工序预埋构件或预留孔、槽,并确保其位置准确。

七、结论

对老龙为二号桥的施工设计,使我们在预应力混凝土连续弯箱梁桥设计理论上、构造上、施工工艺上进行了一些探索。

该桥目前正在进行后期施工。

由于该桥为预应力混凝土连续弯箱梁,箱梁的内外腹板受力情况的分配如何,以及桥梁墩高达68m以上。结构物的抗震性是否与设计一致,都应做出可靠的评价,为此已建议做如下成桥状态下的实验项目:

桥梁设计论文范文第3篇

要想做好盖梁计算工作,促使盖梁适用性得到提升,就需要从这些方面来努力:一是简化单元:因为盖梁的受力主要集中在弯矩、剪力和轴力,同时考虑了盖梁的几何长度,我们用平面杆单元来进行模拟,就可以顺利开展计算工作。二是简化荷载:通过梁体和支座,就会将物体的荷载传过来,那么就需要对最不利内力状况下,汽车引起的各个支座反力给准确计算出来。通过支座和梁体,将汽车荷载传递下来,如果需要十分准确的计算盖梁在不利情况下汽车产生的每个制作的内力,需要按照这些步骤来进行;
求出T型梁支座的反力影响线,在布置车队的过程中,需要充分考虑T型的支座反力,来决定线纵的桥向布置;
为了让桥梁拥有某种最不利的内力,布置于顺盖梁的方向汽车的车轮,盖梁中不同位置其最不利内力对应的是不同的车轮布置。结合车轮的位置,求出横向上T梁荷载的分布系数。在计算各片T梁荷载的横向分布系数时,也有一些问题需要注意;
T梁上的不同剪力及其横向分布系数对应着不同的车轮的横向分布,T梁是相同的,剪力的横向分布系数是不同的,并且支点和跨中处也需要采取不同的计算方法。三是简化边界条件:对盖梁和墩柱的联结进行模拟,结合具体受力情况,科学分析。总之,在对盖梁计算的过程中,需要结合具体的桥梁情况,将科学的计算方法给应用过来,这样盖梁适用性方可以得到提升。我们举了简化边界条件这个例子。众所周知,相较于双悬臂简支梁模型来讲,连续梁模型计算的支点处控制弯矩比较的小,那么如果将双悬臂的简支梁模型给应用过来,就可以适当的削峰处理支点负弯矩。因为模拟的支点间距离会直接影响到连续梁模型的弯矩图量值,但是我们还没有足够的依据来确定这个距离。对于钢构模型来讲,支点处外侧截面有着较大的计算弯矩,其余处和连续梁模型有着基本相同的计算结果。如果在计算过程中,将钢构模型给应用过来,在设计过程中,对支点处外侧截面的控制标准稍微放松,就可以保证盖梁的计算结果,同时,桥墩横桥向的控制内力也可以同时获得,在桥墩设计中,需要对这些方面的内容进行验算,我们通常将这种方法应用到实际设计中。实践研究表明,不仅可以将盖梁的受力承载情况给反映出来,对于施工者的施工操作也可以发挥指导性作用。因为外侧面的内力被悬臂部分的荷载所完全控制,那么相较于实际情况,模型中计算的悬臂长度就比较小,模型的实际弯矩比实际弯矩的规格远远要小,那么将控制标准适当的放松,就可以减少资源浪费。

2结合盖梁预应力,对施工材料优化组合

在盖梁设计过程中,通过设计预应力盖梁,需要促使施工过程中结构安全不受影响,在营运状态下,盖梁的安全性也需要得到保证。因此,在设计的过程中,就需要将较大吨位钢束给应用过来,促使有效预应力得到提升;
要分成两批来张拉钢束,如果有着较多的张拉次数,就会影响到正常的施工;
如果有着较少的张拉次数,施工和营运要求无法得到满足。对钢筋合理布置,如果我们用骨和肉来分别比喻预应力筋和混凝土,那么筋就是普通钢筋,预应力结构只有具备了普通钢筋,方可以正常的运行。因为盖梁有着较大的尺寸,那么就需要对普通钢筋的直径严格控制,箍筋保证在11以上,纵筋要控制在15以上。同时,要科学加密箍筋间距,这样承受力方可以得到提升。在桥梁施工过程中,还需要充分重视空心预制板的使用;
笔者认为,结合盖梁预应力,在设计过程中,选择的空心预制板需要具备较高的强度,并且整片梁顶板厚度在8厘米以上;
如果空心板顶板度在7厘米以内,就需要将开仓处理措施应用过来,凿除掉那些厚度不够的部分,对芯模重新装上,并且将补强筋增加过来,浇筑的混凝土相较于原来的混凝土,有更高一级的标号,这样顶板厚度方可以与设计要求所符合。采取一系列的防水处理措施,如果是空心板底板密实程度不够,或者是没有足够的钢筋混凝土保护层,有渗水漏水问题出现,混凝土有着符合要求的强度,能够顺利通过静载试验,就可以将防水措施应用过来,在不密实的混凝土底板顶面上喷涂赛柏斯防水材料,经过渗透化学作用,混凝土密实度和强度就可以得到显著提升。如果预制空心板建筑高度比设计要求要高,那么就会对桥面铺装层的厚度产生直接影响,如果桥面铺装厚度与设计要求无法符合,那么就可以对墩台帽或者垫石高度进行调整,或者是将较厚的顶板部分给凿除掉,如果已经安装了上构,无法调整墩台帽和垫石,可以对纵坡科学调整;
将这样的设计方法给应用过来,工程施工质量可以得到保证,桥梁的承载力也可以得到提升。

3结语

桥梁设计论文范文第4篇

在其他许多国家的抗震规范中,也或多或少地采用了这一设计原则,即便如此,各国规范在具体的设计程序上绝大多数仍坚持以安全设计地震为准的单一水平设计手法,并认为第一设计水准的要求自动满足[3]。近年来,专家已建议对两个设防水准的地震力都要进行设计,这在一定程度上更加保证了桥梁结构的抗震安全性,也是未来桥梁抗震设计的一个发展方向。理念的提出基于性能的抗震设计思想是一个比较抽象的概念,它没有明确的力的大小的物理意义,也没有单纯的材料强度或结构位移的具体量化结果。因此,基于性能的抗震设计思想不能比较明确的用一个参数来衡量结构的抗震性能,它是对以往的结构的响应的一个综合考量,结构的性能往往与结构的受力大小、强度或位移,耗能能力以及结构的功能有关,更为直接地反映的是为满足人们的正常使用要求或结构功能性或安全性的性能综合考量。因此,对于不同的需求和功能要求,同样一座桥梁的抗震评估结果将有所不同[1]。基于性能的抗震设计可以简要的概括为,用总少的投入,建总可靠的桥梁。正如著名的地震工程学家胡聿贤先生所讲,工程抗震不仅与工程技术有关,而且与社会经济密切相关。基于性能的抗震设计思想是桥梁抗震设计思想发展的一种必然趋势,对于人类进步和社会发展都将起到积极的作用。基于性能的抗震设计思想是一个全新的思想体系,目前已经取得了一些研究成果,但到广泛的应用还有一定的距离,甚至目前都没有形成完全统一的概念。但这并不妨碍基于性能的设计思想的进一步完善。

设计方法的体现

传统的桥梁抗震设计思想即对某一性能目标进行比较,如对结构的地震响应力、地震位移、结构耗能等单一性能参数进行考虑。从严格意义来讲,这并不能反映结构的真实安全性能。而基于性能的抗震设计,其目标即为业主的期望目标或结构性能,包括地震动性能目标和结构抗震性能目标。基于性能的抗震性能目标,是一个对传统的结构的性能的一个综合考虑,因此,各单一结构性能之间的相互关系显得十分重要而又相互制约,如连续梁桥梁结构的梁端位移与墩底弯矩即为相互制约的关系,基于性能的设计思想即要从这两者之间找到一个平衡点,以达到各单一性能的充分而平衡的发挥。同时,基于性能的抗震设计思想也要对结构的经济指标提出要求。人们总是希望结构设计以社会效益和经济指标为目的,基于性能的抗震设计思想即在对结构进行抗震设计时,对桥梁结构遭受地震破坏所造成的损失、维修成本、社会影响等进行综合评估,这也是基于性能的抗震设计思想所必须考虑的一个关键所在。基于性能的桥梁抗震设计是一个涉及多门学科的综合型研究领域,需要对多个领域,如地震学、桥梁工程、经济等都要有一定程度的认知才能进行基于性能的抗震设计,这也对桥梁抗震设计工程师提出了更高的要求。

桥梁设计论文范文第5篇

1.1优点

体外预应力混凝土结构的优点主要表现在以下几个方面:(1)体外预应力筋在转向时呈折现,因此与混凝土接触面少,降低了预应力摩擦损失,促进预应力效益的提高。(2)预应力筋主要布置在腹板的外面,提高了腹板振实效果。(3)缩短了施工工期,提高了施工工作效率。(4)提高了施工的准确性等。

1.2缺点

(1)体外预应力混凝土结构中,由于钢绞线在端部锚固,导致混凝土施工中浇筑振捣比较困难。(2)容易损坏和着火。(3)体外束的应力计算较为复杂。(4)预应力加工费用较高等。

2体外预应力混凝土桥梁转向结构设计方法

体外预应力桥梁中与预应力受力结构相联系的构件有两种:锚固横梁外钢束以及转向结构,同时体外预应力桥梁中的转向结构还承担着对钢束的转向,如果转向结构出现问题,那么就会桥梁的整体结构造成毁灭性的破坏。对转向结构的配筋设计主要采用的是将有限元软件分析与拉压杆法相结合,但是该方式在计算过程中较为麻烦,因此笔者主要介绍了一种更为简便的转向结构配筋设计方法。在进行设计时之前我们可以先制作空间网格模型。该模型主要将转向结构当做竖向的一块板,并对每一个板进行梁格划分,划分后的梁格作为每个板的受力,通过这个模型,可以分析出箱梁中的梁格在钢束转换里的作用下的受力。该模型的计算结果可以对结构中的受力情况进行直观分析并能够加强转向构造配筋。同时,对空间网格模型进行准确性分析可以通过ANSYS软件进行分析。转向结构的受力性能可以通过空间网格模型对其进行参数分析。对转向结构的受力性能有较大影响的参数主要有箱梁底板厚度、斜腹板斜率以及箱梁高度。在现场浇筑立模是时,混凝土的拉力容易受到箱梁底板转向结构厚度的影响。因此,在设计中应该充分考虑这些影响因素,采取合理的转向结构形式对转向结构平面框架进行分析时,箱梁腹板和顶板相交处是支座最合理的设置位置。在对转向结构受力情况影响因素分析时,我们发现箱梁的顶板、腹板其纵向的长度变化对其影响较小,因此,可以将箱梁简化,转变为一个倒置的T型梁,受压翼缘用底板代替。根据相关规定对转向结构进行计算。在设计时,要充分考虑这些计算结果,确保转向结构的稳定向。平行布置和错开布置是转向结构在转向管道双层布置中的两种形式,着两种形式的优缺点较为明显。平行布置与错开布置相比,其转向管道层中间的拉应力较小,但结构构造规整;在上层体外束获得的偏心距方面,错开布置转向管道更能提高预应力效率。所以在实际设计中,要对根据实际情况对其进行选择。

3体外预应力混凝土桥梁锚固横梁设计方法

体外预应力混凝土桥梁锚固横梁配筋设计方法,国内外均采用的是有限元实体单元分析与拉压杆法相结合算法。在对锚固横梁配筋设计方法进行分析时,可以直接采用AN-SYS应力分析。体外预应力锚固横梁的形状、位置变化等都不相同,其配筋设计可以采用两种形式:一是横梁内侧配筋设计,二是局部承压设计。在相应的规范中对局部承压设计有明确的规定,在设计时,可以直接使用规范方法。在体外预应力混凝土桥梁锚固横梁配筋设计中,对横梁内侧受拉钢筋的设计方法主要采用拉压杆模型法。拉压杆模型分析步骤主要有以下几步。(1)首先进行结构的形状、支撑以及荷载等方面实现整体确定。为了方便分析,我们通常将立体的空间三维结构划分为不同的平面进行独立分析。(2)对结构的整体的静力进行分析,由此确定结构支撑反力。(3)对结构进行划分,划分依据为圣维南原理,主要分为B区和D区。B区能够建立起标准桁架模型,可以直接采用拉压杆模型法。D区则需要结合自身实际情况分别建立拉压杆模型对其进行设计。(4)将B区和D区相结合形成完整的拉压杆模型,并计算出该模型中每个拉杆和压杆的轴力。(5)校正每个杆件的承载能力并对拉杆进行配筋设计。(6)实现对每个节点区以及钢筋的细节设计。混凝土结构的配筋设计方法主要采用的是拉压杆模型法,主要是由于其计算结算结果比较安全,但是针对锚固横梁的配筋拉杆模型的构建过程相当复杂。

4相应的工程实例

4.1体外预应力采用方式

针对该桥的施工方式以及单侧张拉预应力分析后得出,该桥具备体外预应力式的所有有利条件。在施工中,如果将体外预应力筋改为体预应力筋,并且进行单侧张拉,那么主梁就需要进行分段施工,同时预应力筋也要分阶段进行张拉。因此,在设计中将其全部采用体外预应力,使整个设计具有经济性。同时还将主梁在纵向方面的所有钢材全部设置为体外筋,不仅能够最大程度的发挥出其优点,同时还可以减少混凝土使用数量。除此之外,还改善了体外力筋的防锈方法,将传统采用的聚乙烯保护管结合灌注水泥浆的方法,转换为采用环氧树脂涂层钢绞线,并且没有设置保护管。

4.2设计概要

(1)结构分析模型。在设计计算时,采用的是平面钢架模型,用于对截面内力的计算。同时采用“换算内力荷载力”对体外预应力筋的应变能力进行分析计算。(2)荷载作用时的分析。转换结构中的预应力筋在按照曲线布置时会产生一定的附加应力,因此,体外预应力筋的张拉应力的取值应该符合实际的设计需要。同时,该桥的荷载设计主要是由极限荷载作用进行控制的,体外预应力筋的数量也由此决定。(3)极限荷载作用时的分析。极限荷载作用时的抗弯计算,主要依据《体外力筋PC桥梁设计手册》进行,对抵抗破坏的弯矩进行计算时,将体外力筋作为抗拉构件考虑。同时,结合结构变形时产生的体外预应力筋应力增量,对该桥的极限荷载值进行确定。(4)锚固端。在体外力筋预施应力方式中,高强预应力筋与体内预应力方式不同,其主要锚固在横梁上,而不是在腹板或是顶底板上,将会产生剪应力和弯曲应力。在对锚固横梁的弯矩和剪力计算时,主要依据《体外力筋PC桥梁设计手册》将其作为格构模式或者是四边固定板进行计算,同时还要配备抗拉和抗剪钢筋。(5)非线性分析。对体外预应力桥梁进行非线性分析,主要是为了确定其结构的破坏安全度。在对其进行分析计算时,主要采用复合非线性框架分析。对材料非线性评价时,为了将混凝土、钢筋等应力的应变关系能够用合适的模型反映出来,可以将主梁构件按照纤维模型进行处理。当主梁构件任意一个纤维达到极限应变值时,将其作为主梁达到极限状态的判定条件。除了上述分析之外,还要考虑以下几个方面。①在体外预应力混凝土桥梁设计中还要加强对斜截面的抗剪设计的研究。②为了推动体外预应力结构的应用,应该在无粘结预应力规程中增加体外预应力。③加强对桥梁在体外预应力桥梁在往复荷载下产生的疲劳问题的研究。

5结束语